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INTRODUCTION

Numerous oscillating fields of various origins
involving energy conversion act on the Earth in a very
wide range of periods. For example, the energy of elec-
tromagnetic waves supplied to the Earth by external
sources gives rise to elastic vibrations due to the seis-
mopiezoelectric effect and other thermodynamic cou-
pling coefficients between these two types of energy,
incoming heat induces elastic stresses in the Earth due
to thermoelastic coupling coefficients, etc. The inten-
sity of an external effect can be small compared to the
forces acting in the Earth; however, the extent of their
influence depends on the energy accumulated in rocks
and cannot be interpreted in terms of linear effects.

The rhythms arising under the action of external or
internal sources (i.e., the synchronization effect) have
long been discussed by geophysicists. The influence of
solar activity, earth tides, and climatic factors on seis-
micity is well known [Sytinskii, 1963; Rykunov 

 

et al.

 

,
1980; Rulev, 1991; Nikolaev and Nikolaev, 1993; Djad-
kov, 1997; Saltykov 

 

et al.

 

, 1997; Tyupkin, 2002]. Stro-
boscopic and other techniques of detecting phase corre-
lation are used to reveal the synchronization effect in
relaxation processes if a series of observations involves
well-pronounced events (earthquakes) playing the role
of markers [Pykovsky 

 

et al.

 

, 2003]. The synchroniza-
tion of acoustic signals by electromagnetic pulses was
established in laboratory experiments [Chelidze and
Matcharashvili, 2003].

The question concerning the threshold of an exter-
nal action that is sufficient for the synchronization of a
process induced by substantially more powerful forces
remains open. It is clear that an open energy system
sensitive to a small external action must be in a meta-
stable state [Sadovsky, 1989]. As the system
approaches its instability, the threshold of an effective
external action becomes lower. However, the Earth is
permanently subjected to noise from natural and artifi-
cial sources. Therefore, the threshold of an effective
detectable influence (including the trigger mechanism)
apparently has a finite value exceeding the level of
noise.

The effect of the appearance of hidden periodic vari-
ations in the flow of weak earthquakes and microseisms
also belongs to the class of phenomena discussed
[Sobolev, 2003, 2004]. In principle, these phenomena
can be analyzed within the framework of the self-orga-
nized criticality (SOC) concept [Bak 

 

et al.

 

, 1989; Sor-
nette and Sammis, 1995], an important role in which is
attached to the appearance of a remote correlation of
seismic events (collective behavior). However, the
physical mechanism of a possible remote correlation in
seismology is not clear as yet; general theories of catas-
trophes and phase transitions in open energy systems need
to be elaborated in relation to heterogeneous media.

Some of the issues considered in [Sobolev, 2004]
require a more comprehensive analysis. Recall that the
effect of hidden periodic microseismic variations in the
range of periods of less than 1 h was investigated in the
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Abstract

 

—Records obtained at the Petropavlovsk, Yuzhno-Sakhalinsk, Magadan, Yakutsk, and Obninsk IRIS
broadband stations before the Kronotski (Kamchatka) earthquake are investigated with the use of various pro-
grams of processing and analysis of time series. Intervals of a stable manifestation of one or several periods of
microseisms (synchronization intervals) inferred from data of different stations do not necessarily coincide in
time. No anomalous meteorological effects are recorded in these intervals. Geodynamic phenomena on global
and regional scales influence the duration and intensity of the synchronization intervals. As distinct from other
stations, the Petropavlovsk record revealed asymmetric variations of the relaxation type that arose five days
before the Kronotski earthquake and three days before the onset of intense foreshock activation. The amplitude
of variations at this station exceeds the level of other stations by an order of magnitude, which indicates that the
source of this earthquake was located in the Pacific seismically active region. The number of predominant peri-
ods at the Petropavlovsk station decreases toward the time moment of the Kronotski earthquake, and the poly-
modal spectrum becomes unimodal, primarily due to the loss of shorter periods: a period of 37 min is most
clearly expressed 1 h before the earthquake. The synchronization intervals of variations, as well as the fore-
shock activation, are indicators of the unstable state of a seismically active region.
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paper cited on the basis of data of a single seismic sta-
tion, namely, the Petropavlovsk station on the Kam-
chatka Peninsula. Moreover, only one technique, pro-
posed in [Lyubushin 

 

et al.

 

, 1998], was used for the
analysis of periodicity. Among others, important ques-
tions concerning the location of a synchronization
region, as well as the structure and statistical properties
of variations, remained open. These gaps are elimi-
nated, to an extent, in the present investigation.

METHODS

As in [Sobolev, 2004], the most attention is given to
the study of microseismic variations in the range of
periods of less than 1 h. The power spectrum of varia-
tions calculated from 15-day data on the 

 

Z

 

 component
obtained at the Petropavlovsk IRIS station on Kam-
chatka is shown in Fig. 1. The initial realization con-
sisted of discrete measurements with a sampling rate of
20 Hz; however, before the estimation of the power
spectrum, we passed to a discretization interval of 30 s
(through averaging and thinning by a factor of 600).
Three intervals of periods are noticeable in the plot of
the spectrum. A decrease in the power of variations due
to the gradually attenuating influence of microseisms of
oceanic origin and weak earthquakes is observed in the
range of short (up to 6 min) periods. The effect of earth

tides contributes to variations in the range of periods of
hundreds of minutes, as is evident from the peaks at
1440 and 720 min corresponding to diurnal and semi-
diurnal oscillations. The IRIS station response to tides
was probably due to tilts of the pedestal. The range of
tens of minutes is largely free of the above effects and
is poorly studied. This range includes overtones of free
oscillations of the Earth [Zharkov and Trubitsyn, 1980]
and was examined episodically, after strong earth-
quakes. The frequency range and comprehensive mete-
orological measurements at IRIS stations favor a
detailed analysis of variations in this range, including
variations preceding strong seismic events.

 

Analysis of Hidden Periodicities in Sequences 
of Peak Values at a Given Level 

 

The method used here was proposed in [Lyubushin

 

et al.

 

, 1998] and is intended for the identification of
periodic components in a sequence of events. Let

 

(1)

 

be the times of sequential events observed in the inter-
val (0, 

 

T

 

]. We consider the following model of the
intensity, containing a periodic component:
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Fig. 1.

 

 Power spectrum of microseismic variations recorded at the Pet station from November 20, 1997, through December 5, 1997
(strictly up to the time moment of the Kronotski earthquake), calculated after 30-s discretization.



 

IZVESTIYA, PHYSICS OF THE SOLID EARTH

 

      

 

Vol. 41

 

      

 

No. 8 

 

      

 

2005

 

SYNCHRONIZATION OF MICROSEISMIC VARIATIONS 601

 

where the frequency 

 

ω

 

, the amplitude 

 

a

 

 (

 

0 

 

≤

 

 

 

a

 

 

 

≤

 

 1

 

), the
phase angle 

 

ϕ

 

 (

 

ϕ

 

 

 

∈

 

 [0, 2

 

π

 

]

 

), and the multiplier 

 

µ

 

 

 

≥

 

 0

 

(describing the Poissonian part of the intensity) are
parameters of the model. Thus, the Poissonian part of
the intensity is modulated by a harmonic oscillation.

At a fixed frequency 

 

ω

 

, the logarithmic function of
likelihood [Cox and Lewis, 1966] for the series of
observed events is

 

(3)

 

Maximizing (3) with respect to the parameter 

 

µ

 

, we
easily find

 

(4)

 

Substituting (4) into formula (3), we obtain

 

(5)

 

We should note that the expression 

 

(

 

a

 

 = 0,

 

ϕ|ω

 

) 

 

≡

 

 

 

 = 

 

N

 

/

 

T

 

 is an estimate of the intensity of the
process provided that it is a homogeneous Poissonian
process (of the purely random type).

Thus, the increment of the logarithmic likelihood
function in the intensity model incorporating a har-
monic component of a given frequency 

 

ω

 

 superim-
posed on a purely random flow of events amounts to

 

(6)

 

We set

 

(7)

 

Function (7) can be regarded as a generalization of
the spectrum of a sequence of events. The plot of this
function shows to what extent the periodic intensity
model is more advantageous compared to the purely ran-
dom model. The maximum values of function (7) specify
frequencies that are present in the flow of events.

L µ a ϕ ω, ,( )ln λ ti( )( ) λ s( ) sd

0

T

∫–ln
ti
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N
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ti ∈
∑

R ω( ) ∆ L α ϕ ω,( ),ln
a ϕ,
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0 a 1, ϕ 0 2π,[ ].∈≤ ≤

The calculation of function (7) using observation
time moments not in the entire interval (0, T] but inside
a moving window of a given width Tw is the next obvious
generalization of the model. Let τ be the time of the
right-hand end of the moving window. Then
expression (7) becomes a function of two arguments,
R(ω, τ|Tw), which can be visualized in the form of 2-D
maps or 3-D images on the plane of arguments (ω, τ). This
frequency–time diagram makes it possible to trace the
evolution of periodic components inside the flow of events
under consideration [Lyubushin, 2002; Sobolev, 2003].

Wavelet Analysis of Seismograms 

This analysis is effective for investigating the fre-
quency–time dynamics of a nonstationary series of
observations consisting, for example, of pulses of differ-
ent amplitudes and duration. Since the use of such anal-
ysis in seismology and geophysics is still very limited,
we describe in greater detail the method applied here.

The orthogonal multiresolution analysis (the wave-
let expansion) of a signal x(s) as a function of a contin-
uous argument s is defined by the formula [Daubechies,
1992; Mallat, 1998]

(8)

Here, α is the number of the detail level;

(9)

are the wavelet coefficients at the αth detail level corre-

sponding to the time moment ; and ψ(α)(s) are the
basis functions of the αth level, which are obtained by
extension and translation of the mother wavelet func-
tion Ψ(s):

(10)

The function Ψ(s) is constructed under the following
conditions: it should be compactly supported and have
a unit norm in L2(–∞, +∞), and an infinite set of functions

ψ(α)(s – ) that are copies of the mother function

translated to the points  and stretched (or con-

x s( ) x α( ) s( ),
α ∞–=

+∞

∑=

x α( ) s( ) b α( ) τ j
α( )( )ψ α( ) s τ j

α( )–( ),
j ∞–=

+∞

∑=

τ j
α( ) j2α.=

b j
α( ) b α( ) τ j

α( )( ) x s( )ψ α( ) s τ j
α( )–( ) sd

∞–

+∞

∫= =

τ j
α( )

ψ α( ) s( ) 2( ) α– Ψ 2 α– s( ),=

ψ α( ) s τ j
α( )–( ) 2( ) α– Ψ 2 α– s j–( ).=

τ j
α( )

τ j
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tracted) by a factor of 2α should form an orthonormal
basis in L2(–∞, +∞). For example, if

(11)

formula (8) provides the expansion of the function x(s)
in Haar wavelets. Function (11) is the simplest and
most compact orthogonal finite wavelet. The
Daubechies functions Ψ(s) = D2p(s) of the order 2p,
possessing the properties

(12‡)

(12b)

form the most widely used family of orthogonal wave-
let functions.

With an increase in the number p of vanishing
moments in formula (12b), the function D2p(s) becomes
smoother, although the number of its continuous deriv-
atives is not proportional to the parameter p. For exam-
ple, the Daubechies function of the 4th order D4(s) sets
to zero the zeroth and first moments and is continuously
differentiable at all points except a countable set of
points of the form k2–l, where k and l are whole num-
bers. At such points, D4(s) has a left-hand derivative
and does not have a right-hand derivative. Note that
Haar wavelet (4) is a second-order Daubechies wavelet
(p = 1). We used a dictionary of 17 wavelets:
10 ordinary orthogonal Daubechies wavelets of orders
from 2 to 20 (the use of higher orders entails numerical
instability) and 7 so-called “symlets,” which are
Daubechies wavelets whose basis functions are more
symmetric compared to ordinary wavelets [Chui, 1992;
Daubechies, 1992; Mallat, 1998]. Symlets possess the
same properties of compactness, orthogonality, com-
pleteness, and smoothness as wavelets (12); however,
for orders of 2 to 6, they coincide with the ordinary
orthogonal Daubechies basis, while, for orders of 8 to
20, some distinctions appear in the form of the basis
function. As a consequence, the total number of vari-
ants of orthogonal compact basis functions used here
is 17.

Now, we address the situation when z(t) is a signal
discrete in time t having a length of N measured values,
t = 1, …, N. We assume that N is an integer of the form 2m

because this is convenient for the subsequent applica-
tion of the fast wavelet transform. If N is not equal to 2m,
the signal z(t) is complemented by zeros to make it 2m

long, where m is the minimum integer such that N ≤ 2m.

Ψ s( ) 1 for s 0
1
2
---,

∈–=

 +1 for s
1
2
--- 1, and zero for other t,

∈

D2 p s( ) 0 outside the interval p– 1 p,+[ ],=

skD2 p s( ) sd

∞–

+∞

∫ 0 for k 0 … p 1–( ),, ,= =

The formula of the multiple-resolution analysis in the
case of a finite sample and discrete time is

(13)

where z(β)(t) is the component of the signal belonging to

the detail level of the number β and  is a constant
proportional to the mean of the sample [Chui, 1992;
Daubechies, 1992; Mallat, 1998; Press et al., 1996].

The coefficients  = c(β)( ) in (13) can be repre-
sented, similarly to formula (9), as the convolution of
the basis function ψ(β)(s) of the continuous argument s
with a certain signal (s):

(14)

The signal (s) is obtained from the signal z(t) with
the discrete time t through the interpolation formula

(15)

where the function Φ(s) is called the scaling function of
the wavelet expansion. For example, in the case of Haar
wavelet (11), Φ(s) = 1 if s ∈ [0, 1], and Φ(s) = 0 for all
other s; consequently, the interpolated signal will be a
piecewise-continuous function. In the general case of
orthogonal Daubechies wavelets, the scaling function is
orthogonal to the principal basis function Ψ(s),

(s)Φ(s)ds = 0, and has the same properties of

smoothness and a compact carrier of the same length as
Ψ(s) (but not coinciding with it completely): Φ(s) = 0
outside the interval [0, 2p – 1]).

If the discrete signal z(t) is obtained from a signal
continuous in time x(s) that is measured at a time step
∆s, then, if ∆s  0, the interpolated signal (s)
always tends in the mean-square metric L2 to the initial
signal x(s). If the scaling function Φ(s) corresponding
to the Daubechies basis of the order 2p is used in for-
mula (15), the interpolated signal (s) will have p – 1
first derivatives continuous almost everywhere, with the
possible exception of a countable set of points, regard-
less of the smoothness of the initial signal x(s). How-
ever, if ∆s  0, these derivatives will tend in the inte-
gral metric L2 to the derivatives of the initial signal only
if x(s) is differentiable almost everywhere also p – 1 times.
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Thus, the choice of the wavelet for the signal analysis
must correspond to its smoothness.

Regardless of the possible origin of the signal z(t)
obtained by the discretization of the continuous signal

x(s) with a certain time step ∆s, the coefficients  of
discrete expansion (13) are a result of the application of
a successive linear filtering of the discrete signal. At the
first step, the discrete signal is split into two parts: the

wavelet coefficients of the first detail level  (or the
“detail signal” of the first level) and the so-called

approximating (smoothed) signal , using the for-
mula

(16)

The coefficients of the linear filter g(k) in (16) pos-
sess the property of detecting high frequencies, and the
coefficients h(k) possess the property of smoothing.
Note that formulas (16) involve not only the linear fil-
tration but also a twofold downsampling procedure;
therefore, the detail and approximating signals contain
half as many samples as the initial signal. Because of a
finite length of the sample, technical difficulties are
associated with the application of formulas (16) to the
beginning and the end of the sample. These difficulties
can be overcome by various methods such as, for exam-
ple, the consideration of the sample z(t) on a ring rather
than in an interval. In this case, edge distortions of the
wavelet filtering results similar to those produced by
the cyclic effect of the discrete Fourier transform [Press
et al., 1996] can arise. Step (16) is repeated m – 1 times
(recall that N = 2m):

(17)

According to formula (17), at each new detail level

of the wavelet expansion, the approximating signal  of
the preceding detail level is split into its high-frequency

component  and the progressively more

smoothed signal . The number of components in
the detail signal (i.e., the number of wavelet coeffi-
cients) and in the smoothed (approximating) signal
decreases by two times as the number of the detail level

c j
β

c j
1( )

a j
1( )

c j
1( ) g t 2 j–( )at

0( ),
t

∑=

a j
1( ) h t 2 j–( )at

0( ),
t

∑=

at
0( ) z t( ), j≡ 1 … N /2., ,=

c j
β 1+( ) g t 2 j–( )at

β( ),
t

∑=

a j
β 1+( ) h t 2 j–( )at

β( ),
t

∑=

j 1 … N2 β 1+( )– ., ,=

a j
β( )

c j
β 1+( )

a j
β 1+( )

increases by unity. The coefficient  in (13) is the
approximating “signal” corresponding to the deepest
smoothing at the final detail level m. The coefficients
g(k) and h(k) of the linear filters (called the conjugated
mirror filters) are interrelated as g(k) = (–1)1 – kh(1 – k)
in accordance with the scaling equations of the orthog-
onal multiple-resolution analysis

(18)

for the scaling and mother basis functions. For the
Daubechies finite basis functions D2p(s), the number of
nonvanishing coefficients in the linear mirror filters
g(k) and h(k) is equal to the order of the function 2p. For

example, for the Haar wavelet, h(k) = 1/  for k = 0, 1
and h(k) = 0 for all other k. For the Daubechies func-
tions of orders 4 and 6, the coefficients of mirror filters
are determined analytically from linear equations fol-
lowing from condition (12b), nullifying a given number
of first moments; however, for higher orders, these lin-
ear equations are solved numerically. We should note
that, as the wavelet order increases, the conditioning of
the linear equations deteriorates and the roundoff error
increases. Therefore, calculations are usually restricted
to wavelets of an order not exceeding 20.

Algorithmically, the wavelet transform is a linear
orthogonal transform of the N-dimensional vector of a

sample z(t) into the vector of coefficients  = ( ,

, …, ( , j = 1, …, nβ), …), whose length is also

equal to N. The vector  consists of the constant

 as a first component and the successively arranged
coefficients of all detail levels, beginning from the mth,
(m – 1)th, and so on, up to the coefficients of the first
detail level, which occupy the entire second half of the
vector [Press et al., 1996]. The inverse transformation

of the vector  yields the initial sample z(t). Note
that the inverse wavelet transformation is also effected
in the form of consecutive steps reconstructing the
approximating signal of the level β from the wavelet

coefficients  and the approximating signal 
of the level (β + 1) with the use of mirror-conjugated fil-
ters by the formula

(19)
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The inverse transformation starts with the coeffi-

cients  and  of the final (lowest-frequency)
detail level of the number m and ends at the first level.
In this case, the number of components in the approxi-
mating signal doubles each time, when the number of
the detail level decreases until the sequence of recon-
structions stops at the first detail level and the number
of components becomes equal to N. The forward and
inverse wavelet transforms (17) and (19) can be numer-
ically implemented in the form of fast algorithms
requiring O(N) operations and a shorter computation
time compared to the fast Fourier transform [Chui,
1992; Daubechies, 1992; Mallat, 1998; Press et al.,
1996]. The component z(β)(t) is a result of the inverse

transformation of the vector of coefficients of the 
type provided that all coefficients, except those corre-
sponding to the level β, are set at zero.

At a sufficiently large value of N, the component
z(β)(t) is localized within the frequency band

(20)

where ∆s is the length of the sampling interval. The

value of the coefficient  reflects the behavior of the

signal z(t) in the vicinity of the point  in the interval
of a length equal to p2β values. Consequently, the
smoother the wavelet, the wider this interval. However,
the main variations (bursts) in the finite basis function
ψ(β)(s) are always concentrated in the interval 2β long,
regardless of the smoothness parameter p. Therefore,

we associate each coefficient  with “a temporal
zone of responsibility” of length ∆T(β) = ∆s2β. The
product of the width ∆Ω(β) = 1/(2β + 1∆s) of frequency
range (20) by the length of the time interval ∆T(β) gives
the area of the so-called “Heisenberg box” on the fre-
quency–time plane; this area is equal to 1/2, regardless
of the detail level under consideration.

The smallest scale detail level in formula (13) is the
first level, and the total number of detail levels m

depends on the sample length. The values  and 
are calculated by using the fast wavelet transform
[Daubechies, 1992; Mallat, 1998; Press et al., 1996].
These values uniquely determine the initial sample z(t),

which can be reconstructed from given values of 

and  by the inverse fast wavelet transform. The
detail level can be associated with the number of the
frequency (the frequency discrete) in the classical dis-
crete Fourier transform. The wavelet expansion differs
from the Fourier analysis by a substantially rarer (uni-
form on the logarithmic scale) set of “wavelet frequen-
cies.” This is the price for such an important property as
the compactness of basis functions, which is absent in
the Fourier expansion and allows one to locate short-

a1
m( ) c1

m( )

Cz
N( )

Ωmin
β( ) Ωmax

β( ),[ ] 1/ 2 β 1+( )∆s( ) 1/ 2β∆s( ),[ ],=

c j
β( )

τ j
β( )

c j
β( )

c j
β( ) a1

m( )

c j
β( )

a1
m( )

lived anomalies (bursts) much more accurately. More-
over, the compactness of basis functions makes the
wavelet analysis applicable to nonstationary and non-
Gaussian time series, the Fourier analysis of which,
although formally possible, is inefficient.

Although the ordinary wavelet expansion possesses
such a useful property as a high-accuracy localization
in time of nonstationary signals, the reverse side of this
property is a poor resolution in frequency, in accor-
dance with the Heisenberg principle. The wavelet-
packet expansion partially eliminates this drawback at
the expense of a certain decrease in the time resolution.
The realization of the packet splitting is based on the
hierarchical scheme of successive wavelet transforms

of the initial coefficients . The orthogonal wavelet-
packet expansion of the signal can be, by analogy with
formula (13), written as the sum

(21)

The quantity q can be equal to 2, 4, 8, …, i.e., q = 2r

(r = 1, 2, 3, …), and it controls the number of sublevels
into which an ordinary detail level is split. For a given
value of q, the maximum number mq < m of the detail
level β that can be split is determined from the condi-
tion that this level must contain at least q wavelet coef-
ficients. The components z(β, γ)(t) are frequency-ordered
and split frequency band (20) of detail level β into q
equal parts. Thus, the signal z(β, γ)(t) is localized in fre-
quency within this band:

(22)

If nβ ordinary wavelet coefficients correspond to the
detail level with the number β, nβ/q wavelet-packet

coefficients , j = 1, …, nβ/q correspond to each
sublevel γ of the packet expansion. The Heisenberg
boxes for these coefficients have a time length q times

larger compared to the initial coefficients , but their
frequency side is q times smaller (consequently, the
area of the Heisenberg boxes remains unchanged and
equal to 1/2).

To obtain the component z(β, γ)(t), it is necessary to
perform successive inverse wavelet transformations

starting with the coefficients . The final inverse
transformation is applied to a certain set of coefficients

, j = 1, …, nβ that occupy in an analogue of the

vector  the same positions as the ordinary coeffi-

cients  of the expansion of the signal z(t). However,
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the inverse transformation with these coefficients yields
the component z(β, γ)(t) rather than z(β)(t). The coeffi-

cients  are called modified wavelet-packet coeffi-
cients of the signal z(t). Thus, the modified coefficients

 are the ordinary wavelet coefficients at the detail
level β for the case when only the component z(β, γ)(t) of
the initial signal rather than the signal itself is fed to the
input of the forward transformation. The Heisenberg

boxes for the coefficients  have the same time

length as for ; however, their frequency length is

equal to that of the coefficients . Thus, the transi-
tion from the ordinary wavelet-packet coefficients

 to the modified coefficients  is a procedure
narrowing the uncertainty time interval (decreasing the
time length of the Heisenberg box). Note that such a
transition preserves the energy of the expansion coeffi-

cients:  = .

If a two-dimensional map consisting of the fre-
quency-ordered Heisenberg boxes of the modified coef-

ficients  is constructed in the time–frequency
plane and each box is painted in accordance with a pal-
ette proportional to the absolute values of the wavelet-

packet coefficients  (or to their logarithms), we
will obtain a diagram visualizing the temporal behavior
of the main time scales (or periods) of a nonstationary
signal. In its outward appearance, this mosaic of wave-
let-package Heisenberg boxes may be inferior in aes-
thetic perception, for example, to the traditional spec-
tral–temporal diagrams. However, it provides a more
accurate and adequate idea of the frequency–time
dynamics of an essentially nonstationary signal consist-
ing of a set of short-lived bursts of various scales that
can differ significantly in shape from a harmonic oscil-
lation.

RESULTS

Figure 2 demonstrates the spectral–temporal dia-
grams of the increment in the logarithmic likelihood
function ∆lnL obtained from data of the following five
IRIS seismic stations with similar characteristics:
Petropavlovsk (Pet) (53.024°N, 158.653°E), Yakutsk
(Yak) (62.031°N, 129.681° E), Obninsk (Obn)
(55.114°N, 36.569°E), Magadan (Mag) (59.575°N,
150.768°E), and Yuzhno-Sakhalinsk (Yss) (46.954°N,
142.755°E). The Pet, Yak, and Obn stations are widely
separated in longitude and are located in areas with dif-
ferent seismogeological conditions. The Pet station is
located in a highly active seismic zone on the Pacific
coast; the Yak station is located in a weakly active
region of the East Siberian platform; and the Obn sta-
tion is located on the seismically passive East European
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platform. The Mag and Yss stations are located, respec-
tively, at the northern and southern boundaries of the
Sea of Okhotsk, characterized by the occurrence of
deep earthquakes.

The dark bands in the diagrams of Fig. 2 indicate the
presence of periodic variations in the range of periods
from 20 to 60 min. The increment ∆lnL was estimated
for the sequence of time moments corresponding to the
maximums in seismograms exceeding the level equal to
the window-averaged value plus the sample estimate of
the standard deviation in the same window. The time is
measured from 00:00 Greenwich time (UTC) of
December 2, 1997. Values of ∆lnL were calculated in a
time window of the width ∆T = 3 h with the step ∆S =
1 h, so that the diagrams in the figure are presented
from 03:00 UTC of December 2. The final points on the
time scale of the diagrams (83 h) correspond to 11:00
UTC of December 5; i.e., they were obtained 27 min
before the Kronotski (Kamchatka) earthquake with the
magnitude 7.7. The Pet, Mag, Yss, Yak, and Obn sta-
tions are located at respective distances of 310, 900,
2360, 3750, and 8060 km from its epicenter (54.64° N,
162.55° E).

The beginning of the analyzed period was chosen
considering that December 2, 1997, was characterized
by a quiet seismic situation in the areas of the stations,
where, according to data of the RAS Geophysical Ser-
vice, no local earthquakes of the energy class K > 10
were observed. Four remote earthquakes (off the
Alaska coast, Ms = 5.2; on the Mid-Atlantic Ridge,
Ms = 4.1; in the Philippines, Mw = 5.3; and in the Med-
iterranean Sea, Ms = 4.3) noted in the ISC catalog rep-
resent a common phenomenon.

The seismic process in the epicentral area of the
future Kronotski earthquake was dramatically activated
on Kamchatka in the middle of the day on December 3.
Three earthquakes with K > 10 and three earthquakes
with K > 11 occurred during this day. The onset of the
foreshock process is marked by the arrow labeled F in
the upper diagram of Fig. 2. According to the catalog of
the Kamchatka Experimental–Methodological Seismic
Party (KEMSP), the activation continued during the
next day, when the number of shocks increased. Seven
events with K > 10, five with K > 11, and one with K =
12.8 (at 22:41:48 UTC) were recorded on December 4.
The last event is marked by the arrow labeled Fa in Fig. 2.
On the day of the Kronotski earthquake (December 5),
13 foreshocks with K > 10, 12 with K > 11, and 4 with
K > 12, including a foreshock with K = 12.5 (08:08:47
UTC) were recorded before the time moment of this
earthquake. The last foreshock is marked in Fig. 2 by
the arrow labeled Fb. Altogether, the foreshock series
included 100 earthquakes of classes K > 8.5. As is evi-
dent from Fig. 2, the first series of periodic microseis-
mic variations arose at all of the five stations at the end
of December 2 to the beginning of December 3 (Green-
wich time). The second series started at about 22:00
UTC of December 4 (71 h in the diagrams) and contin-
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ued up to the time moment of the main shock of the
Kronotski earthquake (83 h).

The first series of shocks was characterized by the
following features. The variations were not synchro-
nous at different stations. The earliest shocks of
December 2 were recorded at the Obn station, located
at the greatest distance to the west of Kamchatka. These
variations end in the Obn diagram after 29 h. Approxi-
mately at this time, the most pronounced variations are
noted at the Yak, Mag, and Yss stations. They disappear
after 31 h. One should bear in mind that, with the win-
dow shift ∆S = 1 h, the visible width of the dark band in
Fig. 1 does not mean that the periodic variations of
interest continued for 3 h. They could have had a
shorter duration, but it must have been sufficient for
detecting these variations by the program used for cal-
culating the function ∆lnL. The following characteris-
tic feature is revealed in the diagram of the Pet station:
periodic variations appear with a delay of 4–5 h relative
to the Yak, Mag, and Yss stations and coincide in the
onset time with the foreshock activation of the Kro-
notski earthquake.

During the second series of periodic variations, the
Pet diagram displays two features distinguishing it
from the diagrams of the other stations. First, the best
expressed maximums appear in the diagram about 2 h
after the maximums at the Obn, Mag, and Yss stations.
Second, 3 h before the Kronotski earthquake, the peri-
odic variations are most distinct at the Pet station. Their
presence at the Mag station is possibly connected with
the fact that the Mag station is relatively close to both
the earthquake epicenter (900 km) and the Pet station
(1140 km). Supposing that the maximums are due to
elastic vibrations in the Earth and taking into account
that their periods range from 20 to 60 min, the wave-
length λ is about 10 000 km, so that the distance
between the Pet and Mag stations is <1/4λ.

A conspicuous feature of the second series of the
∆lnL maximums is that the maximum with a period of
~37 min, which arose 3 h before the earthquake, is
present only at the Pet station.

As was noted in [Sobolev, 2004], periodic variations
in a range of periods shorter than 1 h arose before the
Kronotski earthquake after its foreshocks. In this con-
nection, we analyzed in detail the structure of records
in the period of the strongest foreshocks Fa and Fb,
which occurred 13 and 3 h before the main shock (70.5
and 80.5 h in the diagram of the Pet station in Fig. 2).
This analysis was based on data of the Pet and Yak sta-
tions, taking into consideration that variations after the
foreshock Fa arose at both stations, whereas variations
after the foreshock Fb were recorded only at the Pet sta-
tion.

A 3-h interval of the Z-component record obtained
at the Pet station including the foreshock Fa and a
weaker preceding foreshock is presented in the upper
panel of Fig. 3a. The number of 20-Hz discretized val-
ues is shown on the abscissa axis. As noted above, the

window ∆T = 3 h was used for the identification of the
periodic variations shown in Fig. 2. The structure of
variations obtained after averaging of the initial record
over 1200 discretization points (i.e., after the reduction
to 1-min values) is demonstrated in the two lower pan-
els of Fig. 3a. Plots 2 and 3 are obtained after the appli-
cation of low-frequency filters rejecting high frequencies
beginning from the periods 5 and 20 min, respectively.
All three plots are synchronized in time. This figure
shows that variations in the range of periods <1 h took
place both before and after the foreshock, and no sub-
stantial distortions of their structures are observed
immediately after the foreshock. The calculation of
periodograms of the curves in the range of interest
revealed maximums at 61.3 and 18.4 min. As follows
from comparison of the upper and the two lower curves
of Fig. 3a, the amplitude of variations in the range of
periods <1 h is 20 times smaller than the amplitude of
the foreshock Fa, and this makes the low-frequency
variations invisible in the upper plot.

Figure 3b presents the Yak data in the same 3-h
interval. Here, the Fa foreshock amplitudes exceed to a
lesser extent the amplitudes of microseisms recorded in
a range of periods <1 min (the upper curve). As in the
case of the Pet station (Fig. 3a), the foreshock does not
distort significantly the structure of variations in the
range of periods <1 h (the two lower curves). Maxi-
mums at 31 and 13.3 min are recognizable in the peri-
odograms of curves 2 and 3.

Comparison of Figs. 3a and 3b suggests that, during
the same time intervals, variations at the Pet and Yak
stations differ substantially in their morphological
structure and frequency composition, and there are no
clear indications that the periodic variations arising at
these stations (Fig. 2) are caused by the foreshock Fa.

We applied a similar analysis to a 3-h interval
including the foreshock Fb. Figures 4a and 4b show the
respective plots for the Pet and Yak stations. As in the
preceding case, the foreshock Fb distorts insignificantly
the structure of low-frequency variations observed
before the shock, particularly in the range of periods
exceeding 5 min (the lower curves). Analysis of peri-
odograms revealed maximums at periods of 37.2 and
12.4 min at the Pet station and 23 and 11.5 min at the
Yak station. The variations at these two stations differ
significantly in their morphology and frequency com-
position.

The ~37-min period is best resolved at the Pet sta-
tion (the lower curves in Fig. 4a). Periodic variations at
this period were revealed by the ∆lnL program in the
final hours of the Kronotski earthquake nucleation (the
upper diagram in Fig. 2). Note also that, although the
amplitudes of the foreshocks Fa and Fb at both of the
stations are comparable (Figs. 3a, 3b, 4a, 4b), the peri-
odic variations at the Fa time appeared at both stations
but those at the Fb time were present only at the Pet sta-
tion, located in the Kamchatka seismically active zone
(Fig. 2). Variations of the same type continued at the Pet
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station after the foreshock Fb until the Kronotski earth-
quake.

We should also note that, as is evident from plot 2 in
Fig. 4a, asymmetric pulsed periodic disturbances
37.2 min long are present at the Pet station, whereas
they are absent at the Yak station (plot 2, Fig. 4b).

The subsequent analysis is related to the wavelet
expansions of the records. In order to compare results
for different signals, it is necessary to choose a single
basis wavelet. An orthogonal symlet of the 14th order
nullifying the first seven moments was found to be an
optimal wavelet minimizing the entropy of the distribu-
tion of the squared moduli of wavelet coefficients [Mal-

lat, 1998] for the Pet record and was adopted for the
subsequent analysis of all signals.

Figure 5a presents the results of the wavelet band-
pass filtering of the Pet record after its conversion to 10-s
discretization (through averaging and 200-fold thinning
of the initial 20 Hz). The first three highest frequency
detail levels are removed in the upper plot of Fig. 5a;
i.e., only scales no smaller than 160 s are left. In the
lower plot of this figure, detail levels of the numbers 4–9,
from 160 to 10 240 s (2.84 h), are left. It is noteworthy
that these plots contain sequences of nearly regular neg-
ative peaks. Below, using the wavelet-packet analysis
of this record, we show that these peaks have two char-
acteristic time scales: 22 and 40 min. Such a structure
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Fig. 3. Records of the Pet (a) and Yak (b) stations including the foreshock Fa: (1) initial records; (2, 3) records obtained after the
removal of high frequency variations with periods shorter than (2) 5 and (3) 20 min.
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is observed in the Pet record alone. For comparison,
analogous plots are presented in Fig. 5b for the Yak sta-
tion: the curves are seen to display chaotic behavior.

Analysis of a longer (compared to the interval of
Fig. 5) series of observations showed that the asymmet-
ric variations in the range 30–40 min began at the Pet
station on November 30. Three successive intervals of
the Pet record in the range of periods from 10 to
100 min are presented in Fig. 6. The time (in hours) is
measured from 00:00 UTC of November 20. The verti-
cal bars mark the beginnings of days from November
24 to December 5. It is seen that the variations under
consideration arose in the middle of November 30
(~247 h). Analysis of the KEMSP regional catalog

showed that no earthquakes with K > 8.5 were recorded
in this period, and, according to the ISC catalog, no
earthquakes with magnitudes exceeding 5 occurred
during this time throughout the world. A preceding
earthquake of K = 9.2 occurred on Kamchatka 8 h
before the onset of variations (242.45 h) and was fol-
lowed by an earthquake of K = 8.6 that occurred 5 h
after their onset (255.38 h). Twenty-one earthquakes
(≈3 events per day) occurred on Kamchatka between
the beginning of the period shown in Fig. 6 and the
foreshock activation of December 3 before the Kro-
notski earthquake described above (the arrow F); such
seismic activity is typical of this zone. The strongest of
these events occurred at 197.95 h (K = 10.5), 200.72 h
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(K = 10.2), and 269.07 h (K = 10.3). No visible features
that can be associated with their time moments or with
the time moments of the other earthquakes are observed
in the plots of Fig. 6.

We also checked whether the time interval of peri-
odic variations detected by the ∆lnL program and
shown in Fig. 2 can be identified by other, basically dif-
ferent programs of time series analysis.

Figure 7 shows the wavelet expansions at the first
nine detail levels (the scale of each plot was chosen
automatically) of the seismic records with 10-s discret-
ization intervals for the same five stations and in the
same time interval as in Fig. 2. First of all, we should

note that the foreshocks Fa and Fb of the Kronotski
earthquake are recognizable at the first three (highest-
frequency) detail levels. The lower-frequency detail
levels 4–9 contain a series of low-frequency events, but
only the event that occurred at about 28.3 h is common
to the four stations. This low-frequency event is best
resolved at the Yss and Yak stations, less pronounced at
the Pet station, and weakest at the Mag station, where
only a small burst is noticeable at the eighth detail level
(Fig. 7).

The expansion of the Pet record in Fig. 7 is most
enriched in low frequency variations. The wavelet-
packet diagram (Fig. 8) is useful for its presentation in
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Fig. 4. Records of the Pet (a) and Yak (b) stations including the foreshock Fb: (1) initial records; (2, 3) records obtained after the
removal of high frequency variations with periods shorter than (2) 5 and (3) 20 min.
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greater detail. In this diagram, the detail levels 4–9 are
split into eight parts (altogether, 48 frequency bands;
these wavelet-packet bands are arranged in ascending
order of the common logarithm of the frequency, or
scale, central for each band). Two preferred scales are
present (two dark bands near logarithmic values of
−0.45 and –0.15). These scales were estimated more
accurately from the plots of averages of the squared
wavelet-packet coefficients in each band (the so-called
wavelet-packet spectrum). Two peaks on scales of 22
and 40 min were revealed. Figure 8 shows that the peak
at the period 22 min is largely caused by the fluctuation
of wavelet-packet coefficient values in this band at
about 54 h. The same low-frequency event is clearly

seen in Fig. 7; however, there it is impossible to esti-
mate the energy contribution of each level, which can
be done from the analysis of Fig. 8.

Comparison of Fig. 2 with Figs. 7 and 8 shows that,
in contrast to the ∆lnL program, the wavelet analysis
failed to clearly identify the precursory effect in the last
interval (80–83 h) before the Kronotski earthquake.
This can be attributed to the fact that, from the stand-
point of recognition of the effects of synchronization
between various processes, wavelet analysis has a sub-
stantial drawback: the concept of phase is absent in this
approach. Therefore, if peaks are shifted relative to
each other by a value exceeding their scale, the wavelet
measures of coherence will treat such a situation as the
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absence of synchronism. However, pulse-type anomalies
that arose, for example, in the interval 30 h and could have
been associated with the onset of the foreshock process on
Kamchatka were reliably identified by the wavelet analysis.

DISCUSSION

As is evident from Fig. 2, periodic variations are
clearly recognizable at four stations (except the Pet sta-
tion) in the interval 20–30 h and at all five stations in the
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Fig. 5. Results of wavelet filtering of the Pet (a) and Yak (b) records subjected to 10-s discretization. The upper plot in each panel
relates to detail levels beginning from the fourth (periods longer than 160 s), and the lower plots relate to detail levels 4–9 (periods
from 160 s to 2.84 h).
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interval 70–80 h. The stations are separated by thousands
of kilometers, and their local times differ by 5–9 h; the
extrema of earth tides shift by the same time intervals.
This indicates that the variations under discussion were
not caused by the influence of the Sun or Moon.
According to data of meteorological stations, the atmo-
spheric pressure was somewhat lower only near the
Mag station (976–984 mbar) and at the other stations
varied within 1005–1025 mbar. The wind velocity did
not exceed a few meters per second. Note also the pres-

ence of a stable snow cover. Taking into account all
these circumstances, we may suggest that a global geo-
dynamic source of unknown nature acted during the
time intervals considered. As a response to such a dis-
turbance, the seismic stations recorded periodic varia-
tions in microseisms in the range of periods <1 h.
Responses recorded by different stations were nonsyn-
chronous, depending on local conditions. In this
respect, the Pet station differed most drastically from
the other stations: the variations appeared at it 2–5 h
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days, and the arrows mark the time moments of the three strongest foreshocks.
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later than at the other stations, and variations with a
period of ~37 min observed 3 h before the Kronotski
earthquake were recorded by this station alone.

Comparing intervals of periodic variations with the
time moments of foreshocks of the Kronotski earth-
quake (the ∆lnL anomalies in Fig. 2), the following
facts should be emphasized. Since the anomalies some-
times arose synchronously at widely separated stations,
they were not caused by Kamchatka foreshocks. How-
ever, the onset of foreshock activation F and the strong
foreshocks Fa and Fb were confined to the anomalous

intervals recorded at the Pet station. In our opinion, two
plausible conclusions stem from the aforesaid: (1) the
occurrence of foreshocks and periodic variation anom-
alies are two indicators of an unstable state in the litho-
sphere, and (2) foreshocks can give rise to periodic
variations, but the latter can also provoke earthquakes.

The pronounced anomaly in the ∆lnL function at the
Yss and Yak stations in the interval 28–31 h and the
absence of this anomaly at the Pet station during the
same interval are apparently due to the following fac-
tors. Plots of initial realizations at a sampling frequency
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IZVESTIYA, PHYSICS OF THE SOLID EARTH      Vol. 41      No. 8       2005

SYNCHRONIZATION OF MICROSEISMIC VARIATIONS 615

of 20 Hz recorded at the above stations are presented in
Fig. 9. The plots begin from 04:00 UTC of December
3, which corresponds to 28 h in Fig. 2. A disturbance in
the form of a unipolar pulse about 3 min long was
recorded at the Yss station at 04:25 UTC. A disturbance
of a more complex shape was recorded at the Yak sta-
tion in the same time interval. No anomalous distur-
bances exceeding the level of microseisms were
recorded at the Pet station. No earthquakes in the time
interval under discussion are noted in the ISC world
seismic catalog and in the regional catalogs of Kam-
chatka and Sakhalin published by the RAS Geophysi-
cal Service. According to data of the meteorological
stations located near the Yss, Yak, Mag, and Pet sta-
tions, no anomalous meteorological phenomena were
noted either. In this connection, it may be suggested
that, at 04:25 UTC on December 3, 1997, a geodynamic
movement occurred beneath the Sea of Okhotsk. The
shape of the unipolar pulse recorded at the Yss station
apparently indicates that its source was located within
the wavelength. The question of whether the fact that
the intense foreshock activity preceding the Kronotski
earthquake started 5 h after this event is accidental or
there is a physical relation between these phenomena
remains open. However, the space–time correlations
between the Sea of Okhotsk and Kamchatka earth-
quakes have been noted in a number of works [Sobolev,
1994; Zakharova and Rogozhin, 2004]. Information
based only on seismic variations is insufficient for con-
firming or disproving the geodynamic nature of an

anomaly. Unfortunately, we failed to find any data on
crustal deformations in the region under investigation
in the time interval considered.

Comparison of Figs. 5–7 with Fig. 2 shows that
pulsed variations were observed in fairly long intervals;
however, only in rare cases did they cause anomalies in
∆lnL, i.e., they were periodic. This implies the pres-
ence of a mechanism of synchronization by a lithos-
pheric or external source, and such a synchronization is
not necessarily associated with an increase in the
amplitude of variations. According to a rather wide-
spread point of view [Pykovsky et al., 2003; Chelidze
and Matcharashvili, 2003], synchronization arises in a
medium that is in the state of unstable equilibrium and
is characterized in this case by an increased sensitivity
to external effects. In our case, the synchronization
manifested itself not only on Kamchatka (the Pet sta-
tion), which was apparently in a metastable state before
the Kronotski earthquake. This indicates that synchro-
nization effects arise in various, including seismically
passive, regions of the lithosphere. Consequently,
either these effects are caused by an internal self-orga-
nization of the geodynamic process or vast regions of
the lithosphere are highly sensitive to strain.

Nonlinear wavelet filtering with the use of the
Donoho–Johnstone threshold [Donoho and Johnstone,
1994; Mallat, 1998] was additionally applied in order to
compare Fig. 2 with the results of wavelet analysis. To
accomplish this procedure, the coefficients after the
wavelet transform are arranged in increasing order of
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their absolute values and are then divided into “large”
and “small” values, regardless of the detail level to
which they belong. The essence of the method consists

in a substantiated choice of the threshold value separat-
ing large and small coefficients. The inverse transfor-
mation with the large coefficients yields the most infor-
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mative and compact signal, and all the rest is regarded
as “noise.” This method with some modifications was
used in [Lyubushin et al., 2004] for automatic classifi-
cation of three-component seismic records. In the case
of the records with 30-s discretization intervals ana-
lyzed for the first seven detail levels, the “large” values
account for 1–2% of the total number of coefficients
in the range from 1 to 128 min. The informative and
noisy signals revealed by such a procedure are pre-
sented in Fig. 10 for each station as the upper and
lower plots, respectively. The nonstationarity
observed in the lower plots (noisy components) is
obviously nondiurnal.

Comparing Fig. 10 with Fig. 2, we see that pulses in
the informative signals occasionally coincide in time
with the anomalies of the periodic variations ∆lnL
(intervals of 28–31 and 71–75 h). However, this is not
the case, for example, for the time interval between the
foreshock Fb and the Kronotski earthquake. On the con-
trary, some intervals of informative pulses in Fig. 10
(50–54 h at the Pet station, 50–60 h at the Yss station,
and 40–47 h at the Mag station) are unrecognizable in
the ∆lnL anomalies in Fig. 2. Thus, the occurrence of
the foreshocks and the Kronotski earthquake is unre-
lated to the informative pulses of microseismic varia-
tions. The same follows from our analysis of the noise
level at the five stations under consideration.

If we consider the periods from 8 to 128 min
(Fig. 11), the noises are nonstationary, and the period
~40 min, observable in Figs. 5 and 6, is also identified
at the Pet station. Figure 11 shows that, during the ana-
lyzed time interval, no significant changes in the noise
level were noted at any of the five stations for the four
days before the Kronotski earthquake. The same is
valid for the last interval (3 h before the earthquake),
when a well-expressed precursor arose as a ∆lnL max-
imum (Fig. 2). Figure 11 can also be used for compar-
ing noise levels at different stations taking into account
the calibration data kindly provided by the RAS Geo-
physical Service. The IRIS stations ensure the cali-
brated reception of signals within the range 5–0.0028
Hz [Starovoit and Mishatkin, 2001] (the lower limit
corresponds to a period of 6 min). We examined the
level of microseisms in the range from 1 s to 30 min at
all five stations under consideration, as well as at the
Arti station in the Ural region, and found that the
microseisms have maximum amplitudes in the range 3–
5 s, which agrees with the model of their oceanic origin.
As the period becomes longer, the amplitudes decrease,
dropping on average by a factor of 20 at the 1-min
period. Then the amplitude decrease slows down, and
the amplitudes start gradually rising after a period of 5–
10 min. Qualitatively, the power spectra of the varia-
tions are similar to the spectrum for the Pet station,
shown in Fig. 1. However, the larger the distance from
the Pet station, the slower the amplitude drop with
increasing periods in the range from seconds to a few
minutes. Thus, the variation rates plotted as ordinates in
Fig. 11 allow us to draw the following preliminary con-

clusion: their gradual decrease with increasing distance
from Kamchatka (the Pet station) and their level at the
Pet station, which is an order of magnitude higher than
at the other stations, imply that the source of these vari-
ations is located in the Pacific seismically active zone.
A comprehensive investigation of the level and vari-
ability of microseisms recorded by broadband stations
is outside the scope of this work but seems to be of pri-
mary interest from the standpoint of understanding the
Earth’s “breathing.”

Calculations of the ∆lnL function from data of the
Kamchatka seismic catalog and laboratory modeling
showed that precursors in the form of hidden periodic
variations preceding an earthquake or fracture of a sam-
ple typically have a period gradually increasing as a
catastrophe approaches [Sobolev, 2003]. In the paper
[Sobolev, 2004], devoted to the analysis of a precursor
of the Kronotski earthquake in the 10–100-min range of
microseismic variations, this feature was somewhat
indistinctly expressed, apparently due to substantial
averaging of the spectral peaks identified by the ∆lnL
program. In this connection, we calculated the spectral
time analysis diagram of the common logarithm of the
power spectrum from data recorded at the Pet station
before the Kronotski earthquake. This diagram, shown
in Fig. 12, was obtained for a low frequency noisy sig-
nal after its 30-s discretization and the removal of infor-
mative pulses by the threshold filtering, i.e., for the sig-
nal presented in Fig. 11 (Pet) in the range of periods
from 10 to 100 min.

Figure 12 shows that, as the moving window (4 h
wide) approaches the time moment of the Kronotski
earthquake, the frequency of the main rhythm progres-
sively decreases, with its period changing from 25 to
40–50 min. Thus, the evolution of the spectrum from
short toward longer periods noted in [Sobolev, 2003,
2004] is confirmed.

Calculations of microseismic variations (with the
use of the programs described above) from data
recorded at the Pet station during one day after the Kro-
notski earthquake revealed that the low frequency com-
ponents with periods exceeding 10 min were no longer
present. This additionally indicates that they were
induced by the earthquake nucleation process.

We do not know studies other than [Sobolev, 2004]
that have reported periodic variations in microseisms
arising several hours before a strong earthquake. The
most similar results appear to have been obtained in
[Petrova, 2002; Levin and Sasorova, 1999]. In the first
of these papers, seismogravitational variations in a
range of periods of 1–5 h recorded at GEOSCOPE sta-
tions were investigated. Petrova noted: “The absence of
any substantial differences between the oscillation
spectra calculated from records before and after strong
earthquakes indicates that seismogravitational oscilla-
tions are independent of the Earth’s seismicity. Presum-
ably, these oscillations are related to deformation pro-
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Fig. 10. The results of the Donoho–Johnstone threshold filtering of 30-s discretized seismic records at the five stations for the detail
levels 1–7. For each station, the upper plot in each panel shows the most informative variations in the signal and the lower plots
show noisy variations.

cesses, in particular, within the continent with a com-
plex hierarchical block structure.”

Levin and Sasorova [1999] established that “low
frequency premonitory signals” with periods of 3 to

200 s preceding the arrival of the P wave at the Yuzhno-
Sakhalinsk IRIS station from some earthquakes of the
Kurile–Kamchatka zone are present in seismograms in
the interval from a few seconds to 1.5 h. Taking into
consideration recorded data on “slow earthquakes” in
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various seismically active regions of the world, Levin
and Sasorova derived the following relation between
the period of these variations T and the size of their
source L:

T = B • L1/2, (23)

where the coefficient B is equal to 0.02 s/cm1/2. According
to (23), the linear size of a radiator of such variations must
not exceed a few tens of kilometers, which is comparable
with the dimensions of earthquake sources.

Formula (23) is unlikely to be applicable to the
microseismic variations with a period of ~40 min that
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three detail levels (the resulting range of periods is 8–128 min).



620

IZVESTIYA, PHYSICS OF THE SOLID EARTH      Vol. 41      No. 8      2005

SOBOLEV et al.

are discussed in this work because the source size in
this case should exceed the Earth’s radius by a few
orders of magnitude. Of course, this does not imply that
the origin of the microseismic variations is unrelated to
the source of a forthcoming earthquake. For example,
we cannot rule out the following mechanism: very
weak variations in the gravitational field (overtones of
free oscillations of the Earth or wave motions in the
asthenosphere) permanently act on an earthquake
source, but their amplitude starts rising nonlinearly
only when this source reaches a metastable state due to
an increase in the strain sensitivity of the medium. To
elucidate the nature of the phenomenon recorded,
microseismic data need to be complemented by results
of investigation of other geophysical fields.

CONCLUSIONS

The following main results have been obtained from
the study of synchronous records of microseisms in the
range of periods <1 h obtained at the Petropavlovsk,
Yuzhno-Sakhalinsk, Magadan, Yakutsk, and Obninsk
stations with the use of various programs of processing
and analysis of time series.

The predominant variation periods and their number
vary in time in records of each station and are different
at different stations.

There exist stability intervals for one or several peri-
ods (synchronization intervals), giving rise to maxi-
mums in their spectrum. These intervals can either
coincide or not coincide in time at different stations. No

anomalous meteorological effects were recorded dur-
ing these time intervals.

The self-organization of the seismic process or a
selective response of the medium to weak effects of
cosmic, meteorological, or intraterrestrial origin can be
responsible for the synchronization intervals. The time
and intensity of their manifestation depend on global
and regional geodynamic factors.

Synchronization intervals at the Pet station include
the Kamchatka strongest foreshocks of the Kronotski
earthquake; i.e., the probability of earthquake occur-
rence increases during such periods.

The Pet record differs from records of the other sta-
tions in that it includes asymmetric variations of the
relaxation type preceding the Kronotski earthquake.
These variations arose five days before the earthquake
and three days before the onset of intense foreshock
activation. The amplitude of periodic variations
recorded at the Pet station is an order of magnitude
higher compared to the other stations, implying that the
source of these variations is located in the Pacific seis-
mically active region.

The number of predominant periods at the Pet sta-
tion decreases toward the time moment of the Kro-
notski earthquake, so that the polymodal spectrum of
the variations is transformed into a unimodal one.
Shorter periods disappear, and a period of 37 min
becomes predominant 1 h before the earthquake.

The synchronization intervals of variations, as well
as the foreshock activation, are indicators of an unsta-
ble state of a seismically active region.
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