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ABSTRACT 
Multidimensional time series of Caspian Sea level and wind speed measured in 15 coastal stations dur-

ing time interval 1977−1991 were analyzed using wavelet-based approach with a purpose detect time and 
scale-dependent effects of collective behavior. The results present a sequence of sharp peaks of the coher-
ence measure at the 1st detail level with duration near 1.5 year. These bursts of coherence are connected to 
intensive slow movements of sea bottom during aftershocks seismic activity after the strong earthquake 
06.03.1986, M=6.6. Another detected effect consists in decreasing of the “strength” of coherence bursts dur-
ing seasonal peaks (which correspond to each autumn-winter period) with approaching to the end of obser-
vation interval. For wind speed observations the main result consists in similar decreasing the strength of col-
lective behavior. This decreasing could be connected with regional change of atmospheric circulation within 
Caspian Sea region. 

1 INTRODUCTION 

Here we present results obtained by the method, 
which was elaborated in [Lyubushin, 2000-2002].  
These methods are intended for detecting collective 
effects within scalar components of multi-
dimensional time series of monitoring and are based 
on wavelet decomposition [Chui, 1992; Daubechies, 
1992; Mallat, 1998]. The method is a wavelet modi-
fication of previously elaborated methods of collec-
tive effects extracting, which were realized for Fou-
rier decomposition and using of classic multi-
dimensional parametric models of multiple time se-
ries [Lyubushin, 1998]. In papers [Lyubushin et al., 
2003, 2004] the Fourier-based method was used for 
statistical analysis of rivers’ runoff and Caspian Sea 
level multiple time series. We preferred wavelet-
based approach because it is the most suitable for 
investigating transient effects within signals. We 
used a robust modification of the wavelet-based co-
herence measure which was proposed in [Lyubushin, 
2002]. 

 
2 METHOD 

The method constructs an estimate of scale-
dependent measure of coherence behavior in a mov-
ing time window. The scale-dependent coherence 
measure on the given detail level within given time 
window is the product of absolute values of canoni-
cal correlation coefficients [Hotelling, 1936; Rao, 
1965] of wavelet coefficients of each scalar signal 

with respect to wavelet coefficients of all other sig-
nals. Thus, if we consider  time series then 
the wavelet-based coherence measure equals to the 
absolute value of the product of q  canonical correla-
tions. Absolute value of each canonical correlation 
describes “the strength” of connection of the consid-
ered scalar time series with the set of all other time 
series on the given detail level. It means that the 
product of  such values describes the strength of 
summary effect of collective behavior of the multi-
ple time series. The main details of computing the 
used coherence measure are described in 
[Lyubushin, 2002]. It is essential to underline that 
the estimates of canonical correlations are con-
structed as a robust method [Huber, 1981], i.e. they 
are stable to the presence of outliers within data or 
within values of wavelet coefficients. 

q, q 3≥

q

 
Let  be a general number of scalar time se-

ries to be analyzed simultaneously, τ  be time index 
corresponding to the right-hand end of the moving 
time window of the length N  samples.  Let 

 be the minimum integer 
value of the type 2 in the integer power degree 
which is equal or greater than . 

q 3≥

m mM min{2 : 2 N}= ≥

N
 
For each fragment of initial scalar time series 

corresponding to the current position of time win-
dow the following sequence of preprocessing opera-
tions are performed: 
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(i) the fragment is clarified from general 
linear trend; 

(ii) optional: coming to time increments for 
the fragment; 

(iii) the fragment is exposed to the procedure 
of tapering by cosine time window; 

(iv) the fragment is renormalized to have a 
unit sample standard deviation, i.e. each 
value of the fragment is divided by the 
sample estimate of the standard devia-
tion; 

(v) the fragment is appended by zero values 
till the general length . mM 2=

 
Removing general linear trend for the fragment 

is a standard operation for suppressing those low-
frequency components which could not be estimated 
statistically significant due to the finite length of the 
window. Optional operation (ii) of coming to time 
increments is an additional tool for making the sam-
ple within current time window to be more station-
ary. The tapering procedure [Jenkins, Watts, 1968] 
consists in multiplying the fragments of time series 
by the value which is equal to 1 for all inner samples 
of the time window and is going to zero when the 
time index is going to the left-hand or to the right-
hand ends of the window. The law of going to zero 
of the tapering function is cosine. Afterwards (i.e. 
after general trends removing, tapering, renormaliz-
ing for unit standard deviation and appending by 
zero values) we perform discrete fast wavelet trans-
forms [Press et al., 1996] of all these fragments us-
ing some orthogonal wavelet (Haar’s wavelet for in-
stance). Appending by zero values till the length 

 is necessary for applying the fast wavelet 
transform.  

mM 2=

 
As the result of the operations described above 

we will have a set of  wavelet coefficients for de-
tail levels : 

q
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The wavelet coefficients  within the de-

tail level   describe variations of the signals with 
scales from  till 

( , )
jc (kα τ )

α
t 2α∆ ⋅ ( 1)t 2 α+∆ ⋅ , i.e. the 1st detail 

level is the most high-frequency. The number of 
wavelet coefficients on the detail level α  is equal to 

. But only the first part of 
 wavelet coefficients 

corresponds to the initial, non-appended by zero 
values parts of time series. Index  within formula 

(1) defines the position of scale-dependent vicinity 
inside the current moving time window which has 
the influence on the value of wavelet coefficient due 
to applying orthogonal finite support wavelet trans-
form of the fragment.  
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Let 0j  be a number of some time series, 

01 j q≤ ≤ , and let us try to construct a measure de-
scribing the connection of the selected time series 0j  
with all other scalar time series within current time 
window. This measure should be scale-dependent, of 
course. For this purpose let us consider a linear 
combination: 
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with unknown coefficients jγ . It should be under-
lined that the index 0j  is omit within the sum in the 
formula (2). The values of coefficients jγ  are found 
from solution the following minimization problem: 
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The robustness [Huber, 1981] of the procedure 

consists in minimizing the sum of absolute values in 
the formula (3) instead of the least squares approach, 
which follows to classical canonical correlation 
scheme of Hotelling [Hotelling, 1936; Rao, 1965]. 
For least squares approach the unknown coefficients 

jγ  in linear combination (2) are found by linear op-
eration with sub-matrices of covariance matrix of 
wavelet coefficients whereas the robust minimiza-
tion problem (3) must be solved numerically by the 
method of generalized gradient [Clarke, 1975] 
within each position of the moving time window. 

 
Let 

0

( , )
j, j
α τγ  be a solution of the problem (3). Let 

us define a sequence of scalar values: 
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0
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which could be called a robust canonical wavelet 
coefficients for the selected time series 0j . Now let 
us calculate correlation coefficient between the val-
ues of canonical coefficients  and initial 

wavelet coefficients  for 
0

( , )
jd (kα τ )

)
0

( , )
jc (kα τ k 1, ...,Lα= . In 
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order to provide robustness in all stages of final es-
timate we will use the robust formula for correlation 
coefficient [Huber, 1981]  for the pair of 
samples : 

(x, y)ρ
x(k), y(k), k 1, ...,n=

 
2 2

2

S(z ) S(z )(x,y)
S(z ) S(z )

−
ρ =

+ 2                  (5) 

where 
 

= ⋅ + ⋅
= ⋅ − ⋅

= =
= −

z(k) a x(k) b y(k),
z(k) a x(k) b y(k),
a 1 / S(x), b 1/ S(y),
S(x) med | x med(x) |

            (6) 

 
where  means median value of the sample x  
and  means absolute median deviation of the x . 

med(x)
S(x)

 
Substituting  for ,  for 

 and n  for L  within formulas (5) and (6) 

we will obtain the values of robust correlation coef-
ficient  describing “the strength” of con-

nection of the selected time series 

x(k)
0

( , )
jc (kα τ )

)

y(k)

0

( , )
jd (kα τ

α

0j ( , )ν α τ

0j  with all other 
time series. Let us call the value  as robust 

wavelet-based canonical correlation of the series 
0j ( , )ν α τ

0j  
(which is scale-dependent obviously). 

 
The necessity for using robust estimates is fol-

lowing from the strong instability of least squares 
calculations to the presence of outliers in initial time 
series or in the values of wavelet coefficients. An-
other reason is the ability of wavelet expansion ac-
cumulate the main information about the signal 
within a few number of wavelet coefficients – that is 
why the population of wavelet coefficients usually 
has a probability distribution with “heavy tails”, i.e. 
has outlier values. Thus, using robust estimates for 
joint analysis of wavelet coefficients from different 
signals is necessary without connection to probable 
existence of outliers within initial data. Changing 
sequentially the number 0j  of selected time series 
we will obtain the values of robust canonical corre-
lations  for all time series. k ( , )ν α τ

 
Statistical significance of the -estimates 

depends on the number  with the sum (3). But the 
number of wavelet coefficients  rapidly decreases 
with increasing of α  whereas for statistically sig-
nificant estimates we must have some minimum 

value . The value of significance threshold 
 is the parameter of the method and it defines 

the maximum possible value of the detail level index 

k ( , )ν α τ
Lα

Lα

minL

minL

maxα  which could be analyzed by the method: 

max minmax{ : L L }αα = α ≥ . 
 
After definition of the -value the tapering 

preprocessing operation could be described in more 
details. The tapering operation is necessary for 
avoiding circular effects of discrete wavelet trans-
form of the finite length sample [Press et al., 1996]. 
These effects are depending on the considered 
scales: the more is the scale, the longer are circular 
effects at the end of the transformed sample. Thus, 
the length of the end parts of tapering operations 
must be dependent on the maximum scale which is 
analyzed. That is why we have taken the length of 
end parts of the time window where the tapering op-
eration is in action to be equal to .  

maxα

max( 12 α − )

 
The number of wavelet coefficients taking part 

in the estimate of the -values rapidly de-
creases with increasing of the detail level number 

k ( , )ν α τ
α . 

That is why standard deviations of statistical fluctua-
tions of k ( , )ν α τ -estimates are not uniform. In order 
to make statistical fluctuations of estimates depend-
ent on the length of moving time window  only 
(and independent on the detail level number) let us 
introduce additional smoothing operation: 

N
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The more is the number of detail level the deeper 

is averaging operation (7) using the values of esti-
mates obtained by adjacent previous time windows. 
According to the formula (7) the efficient length of 
moving time window became scale-dependent and 
equals to ( )

eN N 2α α 1= + −  samples. 
 
A wavelet-based robust coherence measure 

(WBRCM) is defined by the formula: 
 

q

k
k 1

( , ) | ( , ) |
=

κ τ α = ν τ α∏                  (8) 

 
The measure (8) has possible values within 

boundaries from 0 up to 1. The more is the value of 
(8) the stronger is the collective effect of coopera-
tion between analyzed signals on the time scales 
corresponding to the detail level number α . It 
should be noticed that the value (8) is the product of 



be noticed that the value (8) is the product of  val-
ues from the interval [0,1]. That is why the absolute 
values of κ τ  depend on the number q  of ana-
lyzed time series and the comparison of 

q

( ,α)
( , )κ τ α -

values could be possible for the same values of q . 
The most interest lays in relative peak values of the 
statistics (8) for different -values (i.e. for different 
positions of time window). For convenience of si-
multaneous comparison of -values for differ-
ent detail levels let us start the index  with initial 
value . The value of  is 
based on the information about the signals for time 
indexes  strictly. Thus, the 
method has 3 free parameters: type of orthogonal 
wavelet, the length N  of moving time window and 
the significance threshold . The purpose of the 
analysis consists in obtaining and interpretation of 
extreme -values. 

τ

( , )κ τ α
τ

max max( )
eN N 2α α= + −1 κ τ α

min

( , )

( )
et : N tατ − ≤ ≤ τ

minL

( , )κ τ α
 
Thus, free parameters of multiple WBRCM (8) 

are the length of moving time window  type of the 
wavelet and significance threshold . 

N
L
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3 DATA 

The arrangement of 15 coastal stations whose 
observations were used to solve the problem stated 
is schematically shown in Fig.1. The numbers of sta-
tions are coded; however, for simplification, the 
standard combination of numerals at the beginning 
of the codes (970) is omitted. For example, the ac-
tual number of station 48 is 97048. The initial time 
series represent the sequences of synchronous meas-
urements at a time step of 6 h beginning on January 
1, 1977, at 09:00 and continuing to the end of 1991. 
The total duration of each analyzed series is equal to 
21908 counts. 

 
In the paper [Lyubushin et al., 2004] the data of 

Caspian Sea level variations from these stations 
were analyzed with a purpose detecting common 
harmonic variations for the period 1977-1991. Un-
fortunately the wind speed data have less duration of 
synchronous recording. 

 
The Fig.3 contains graphics of all wind speed 

time series. The initial time series represent the se-
quences of synchronous measurements at a time step 
of 6 h beginning on January 1, 1977, at 09:00 and 
continuing to the end of April, 1988. The total dura-
tion of each analyzed series is equal to 16556 
counts. Some stations have more long wind records 
but we have taken this duration to have a possibility 
for simultaneous processing data from all stations.  

 
 It should be noticed that the first third part of 

observational time interval evidently is characterized 
by large values for some series (07, 17, 60, 61, 65, 
74). The stronger is the wind the more area is 
touched by its influence. Thus, this is the 1st data pe-
culiarity which can lead to increasing of collective 
effect covering all stations.  

 
4 RESULTS 

 The length of moving time window was taken 
from the reason that it equals the length of climatic 
season (3 months) and can catch seasonal variations 
of common effects within wind speed data.  The 1st 



detail level corresponds to scale range from 12 to 24 
hours, the 2nd – from 24 to 48 hours, the 3rd – from 2 
till 4 days and the 4th – from 4 up to 8 days varia-
tions. The sharp peaks at the 1st detail levels is con-
nected to intensive slow movements of sea bottom 
during aftershocks seismic activity after the strong 
earthquake 06.03.1986, M=6.6. Other detail levels 
have seasonal peaks of collective behavior with de-
creasing strength from with approaching to the end 
of observation interval. The more senior detail levels 
are not possible for the analysis because of the finite 
length of moving time window ( =360 counts) and 
the chosen threshold minL =16 for minimum possible 
number of wavelet coefficients within detail level.  

N

 
The results of joint analysis of 15-dimensioanl 

sea level variations time series present a sequence of 
sharp peaks of the coherence measure at the 1st detail 
level with duration near 1.5 year (Fig.1(a1)). These 
bursts of coherence are connected to intensive slow 
movements of sea bottom during aftershocks seismic 
activity after the strong earthquake 06.03.1986, 
M=6.6. 

 
Another detected effect consists in decreasing of 

the “strength” of coherence bursts during seasonal 
peaks (which correspond to each autumn-winter pe-
riod) with approaching to the end of observation in-
terval. 

 

For wind speed data processing the first peculi-
arity (Fig.5) is the burst of collective effects for de-
tail levels 1 and 2 (12-24 hours and 24-48 hours 
variations, Fig.5(a) and 5(b)) for time interval 100-
400 days (the 2nd half of 1977 – the beginning of 
1978). Another interesting effect is gradual decreas-
ing of the strength of collective effects for detail lev-
els 3 and 4 (2-4 days and 4-8 days variations, 
Fig.5(c) and 5(d)) during all period taking for the 
analysis. Thus, we have obvious negative trend in 
common atmospheric circulation with the Caspian 
region. 

 
5 CONCLUSIONS 

Results of multidimensional wavelet-based 
coastal observations of Caspian Sea level and wind 
speed during 1977-1991 interval give evidence to 
the hypothesis about decreasing of the cooperative 
behavior “strength”. This decreasing could be con-
nected with regional change of atmospheric circula-
tion within Caspian Sea region: with approaching to 
the end of observational time interval 1977–1991 the 
strong  autumn-winter storm winds directions mi-
grate from mostly North-South (along the Sea) more 
to West-East (across the Sea) what has reflection in 
decreasing of cooperative effects.  
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