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INTRODUCTION

The determination of 

 

P

 

 and

 

 S

 

 wave arrivals and their
traveltime curves is one of the most routine problems in
seismic data analysis [

 

Seismic Signal …

 

, 1982; Hatton
et al., 1986; Pisarenko et al., 1987; Gashin and Kushnir,
1998; Kushnir and Khaikin, 2000]. Large amounts of
seismic data, particularly in problems of seismic moni-
toring of weak events and seismic exploration, involv-
ing a high noise level and large numbers of bad traces,
makes it very important to automate the detection of
wave arrivals. In this paper, we propose a new method
for solving this problem based on the use of compact
orthogonal basis functions (wavelets) [Chui, 1992;
Daubechies, 1992; Mallat, 1998; Press et al., 1996] for
the decomposition of initial signals and adaptive analy-
sis of the principal components to suppress noise. The
well known advantages of wavelet analysis over the
classic Fourier expansion are due to the compactness of
basis functions. The application of wavelet analysis to
seismic data treatment makes it possible to develop new
methods for the identification and classification of sig-
nals [Lyubushin et al., 2004]. One of the shortcomings
of using orthogonal wavelets is their low resolution in
frequency, which is the flip side of their good resolution
in time. An increase in the frequency resolution of
wavelet analysis in the paper is achieved by using so-
called wavelet packets. Note that the method proposed
here can be realized with the use of ordinary bandpass
Fourier filtering, but the result will then be much less
accurate and stable.

METHOD

Below, the method is successively described with
parallel examples of real data treatment. This form of
presentation appears to be more appropriate for under-
standing all the elements of the method as compared
with the conventional form (a formal description of the
method followed by the results of its application). The
data we used are seismograms from the database of the
Cotton Valley, East Texas field experiment on the iden-
tification of events (hydraulic fractures, i.e., crack
openings caused by hydraulic pressure) initiated by
high-pressure water injection into a gas reservoir [Max-
well et al., 1998, 2000; Zinno et al., 1998]. The events
were recorded upon the attenuation of transient pro-
cesses following the water injection by a system of
three-component (3C) geophones mounted in a bore-
hole at 50-m intervals. The sampling frequency was
1000 Hz, the total number of geophones was 45, and
the number of samples in each scalar (1C) trace was
400. Initial data are presented in Fig. 1 separately for
the 

 

X

 

, 

 

Y

 

, and

 

 Z

 

 components. A number increasing from
1 to 45 in proportion to the geophone depth is ascribed
to each 3C record. The data were provided for testing
the method by Dr. David Leslie of the Schlumberger
Cambridge Research Center.

This example of data is typical of the experiment. As
can be easily seen, the data contain a large number of
bad 1C traces. On the other hand, there are many 3C
records in which not all of the components are bad.
Thus, it is necessary to develop a method for automatic
rejection of bad 1C traces. Qualitatively, 3C records can
be classified as “bad” (all three scalar traces are bad),
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“partially good” (if one or two scalar traces are suitable
for subsequent analysis), and “good.” Below, 1C traces
will be designated as X-21, Z-02, Y-14, and so on, with
obvious mnemonics: the letter indicates the compo-
nent, and the number specifies the 3C trace in Fig. 1.
The method must not reject all information contained in
a 3C record if one or even two scalar components are
bad: any adequate 1C trace must be used. If a 3C trace
is good or contains two good 1C traces, it is possible to
use the method of principal components for additional
noise suppression. In the case of 3C seismic records,
the method of principal components is none other than
polarization analysis [Kanasewich, 1981].

The method consists of the following sequence of
operations:

(1) wavelet packet decomposition of all 1C traces;

(2) estimation of variations in the multilevel mea-
sure of nonstationarity for all 1C traces;

(3) quality control of 1C traces with the use of the
multilevel measure from step (2), the normalized
entropy of the distribution of the squared wavelet coef-
ficients, and the criterion of the high-to-low frequency
energy ratio for marking automatically bad 1C traces;

(4) calculation of adaptive principal components for
all good or partially good 3C traces in overlapping
wavelet packet frequency bands and in scale-dependent
moving time windows;

(5) estimation of variations in the multilevel mea-
sure of nonstationarity for all scale-dependent principal
components;

(6) determination of the initial estimates of 

 

S

 

 wave
arrival times using maximum values of the nonstation-
arity measures calculated at step (5);

(7) correction of the initial estimates of 

 

S

 

 wave
arrival times and identification of the hyperbolic 

 

S

 

 wave
traveltime curve using an iterative robust procedure for
adjusting parameters of the curve;

(8) determination of the initial estimates of 

 

P

 

 wave
arrival times using maximum values of the nonstation-
arity measures calculated at step (5) for time moments
strictly before the 

 

S

 

 arrival times determined at step (7);

(9) correction of the initial estimates of 

 

P

 

 wave
arrival times and identification of the hyperbolic

 

P

 

 wave traveltime curve using an iterative robust proce-
dure for adjusting parameters of the curve.

Each of the above steps is described in detail below.
In addition to the initial data, Fig. 1 also shows the final
estimates of the 

 

P

 

 and 

 

S

 

 wave traveltime curves. All
other figures (Figs. 2–6) illustrate the particulars of the
above sequence of operations.

 

1. Wavelet packet decomposition.

 

 Orthogonal
wavelet decomposition of a signal 

 

x

 

(

 

t

 

)

 

 with the discrete
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Fig. 1.

 

 Initial data: (a) 

 

X

 

 component; (b) 

 

Y

 

 component; (c) 

 

Z 

 

component. The horizontal axis shows the numbers of time samples
(a sampling frequency of 1000 Hz); the vertical axis shows the numbers of traces corresponding to three-component geophones
mounted in a vertical borehole at 50-m intervals. A single exclamation mark indicates scalar traces identified as bad at the first stage
of the automatic quality control; a double exclamation mark indicates scalar traces identified as bad at the second stage of automatic
quality control. Each plot shows the lines of hyperbolic traveltime curves of arrival times, first for 

 

P

 

 waves and then for 

 

S

 

 waves.
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time index 

 

t

 

 = 1, …, 

 

N

 

 gives its representation as the
sum

 

(1)

 

where 

 

x

 

(

 

β

 

)

 

(

 

t

 

)

 

 is the signal component belonging to the
detail level with the number 

 

β

 

 [Chui, 1992;
Daubechies, 1992; Mallat, 1998; Press et al., 1996].
The total number 

 

m

 

 of detail levels depends on the
length 

 

N

 

 of the signal in a number of samples. If 

 

N

 

 = 2

 

n

 

,
then 

 

m

 

 = 

 

n

 

 and the number of wavelet coefficients is
equal to 

 

N

 

/2

 

 at the 1st level, 

 

N

 

/4

 

 at the 2nd level, and so
on, up to the 

 

m

 

th detail level, which has a single coeffi-
cient of decomposition. If 

 

N

 

 is not equal to 

 

2

 

m

 

, we add
zeros to the signal 

 

z

 

(

 

t

 

)

 

 until its length becomes equal to

 

2

 

m

 

, where 

 

m

 

 is the minimum integer for which 

 

N

 

 

 

≤

 

 2

 

m

 

.
The component 

 

x

 

(

 

β

 

)

 

(

 

t

 

)

 

 for a sufficiently large value of

 

N

 

 is localized in the frequency band

 

(2)

 

where 

 

∆

 

t

 

 is the length of the time sampling interval
(

 

10

 

–3

 

 s in our case). The relationship between the wave-
let decomposition coefficients and the initial data set is
described in detail in [Chui, 1992; Daubechies, 1992;
Mallat, 1998; Press et al., 1996; Lyubushin, 2000,
2002].

A distinctive feature of formula (1) for wavelet
decomposition (note that the same or similar formula
can also be written when using multiband Fourier filter-
ing) is precisely the use of the complete orthogonal
basis of compactly supported functions. In this case, the
influence of short-lived pulsations (in both noise and
useful signals) is inevitably limited in time, whereas the
use of a basis of sines and cosines, due to the unbound-
edness of their support, results in side effects of filtering
(particularly, for signals with a small number of sam-
ples) that lead to “globalization” of the influence of
local pulsations on the entire time interval being pro-
cessed. Ultimately, these side effects lead to the post-
filtering spread of seismic wave fronts and reduce the
accuracy of the arrival time determination.

Although ordinary wavelet decomposition has the
useful property of high accuracy in localizing nonsta-
tionary signals in the time domain, the flip side of this
property is, in accordance with the Heisenberg princi-
ple, a low frequency resolution. The wavelet packet
decomposition can partially eliminate this shortcoming
at the expense of a certain decrease in the time resolu-
tion. The realization of packet decomposition is based
on a hierarchical scheme of successive transforms of
initial coefficients (wavelet transforms of sequences of
wavelet coefficients). The orthogonal wavelet packet

x t( ) const x β( ) t( ),
β 1=

m

∑+=

Ωmin
β( ) Ωmax

β( ),[ ] 1/ 2 β 1+( )∆t( ) 1/ 2β∆t( ),[ ],=

 

splitting of the signal, similarly to formula (1), can be
written as the sum

 

(3)

 

The quantity 

 

q

 

 can be equal to 2, 4, 8, …; i.e., it has
the form 

 

q

 

 = 2

 

r

 

, 

 

r

 

 = 1, 2, …, and defines the number of
sublevels into which the ordinary detail level is split.
For a given value of 

 

q

 

, the maximum number 

 

m

 

q

 

 < 

 

m

 

 of
the detail level 

 

β

 

 that can be split is determined from the
condition that it must contain the minimum 

 

q of wavelet
coefficients. The components x(β, γ)(t) are frequency-
ordered and split frequency band (2) corresponding to
the detail level β into q equal parts. Thus, the signal
x(β, γ)(t) is localized in the frequency band

(4)

Below, we use only the value q = 8. In this case, the
component x(β, γ)(t) will be referred to as the γth octave
of the detail level with the number β. For wavelet packet
decomposition, we use the eighth-order Daubechies
basis function, which nullifies the first four moments,
which have eight nonzero coefficients in the discrete
time filter (used to calculate both the coefficients of decom-
position and the components in formulas (1) and (3)). This
choice is the result of a large number of experiments
with wavelets of various orders with automatic wavelet
selection using criteria of the entropy minimum type
[Mallat, 1998]. A value of 8 for the wavelet order
proved to be best for the seismic data analysis: its basis
function is both sufficiently compact (with increasing
order, its support expands) and sufficiently smooth (a
decrease in the order gives rise to discontinuities of deriv-
atives in the compactly supported basis function).

The wavelet packet decomposition isolates the com-
ponents of the signal in overlapping frequency bands
consisting of a given number p of adjacent octaves that
can belong to different detail levels. These wavelet
packet frequency bands are displaced relative to each
other by one octave and give detailed frequency–time
decomposition of the signal. Let p be the number of
adjacent octaves. Then, we can ascribe the integral
index α = 1, …, αmax to consecutively overlapping
wavelet packet frequency bands of a length of p octaves
with gradually increasing boundaries of the maximum

( ) and minimum ( ) periods. The values
(p, αmax) are the parameters of the method and define
the frequency resolution (the parameter p) and the fre-
quency range (the parameter αmax) of the wavelet
packet analysis. To process the data set used as an
example, we chose the values p = 6 and αmax = 17. The

x t( ) const x β γ,( ) t( ) x β( ) t( ).
β mq 1+=

m

∑+
γ 1=

q

∑
β 1=

mq

∑+=

Ωmin
β γ,( ) Ωmax

β γ,( ),[ ], Ωmin
β γ,( ) Ωmin

β( ) γ 1–( )∆Ω β( ),+=

γ 1 … q;, ,=

Ωmax
β γ,( ) Ωmin

β γ,( ) ∆Ω β( ),+=

∆Ω β( ) Ωmax
β( ) Ωmin

β( )–( )/q.=

Tmax
α( ) Tmin

α( )
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table presents the correspondences between the mini-
mum and maximum periods of the frequency bands for
the selected values of the parameters p and αmax mea-
sured in units of the length of the sampling interval ∆t.

Let

(5)

denote the set of all 1C seismic traces. Here, Ntr is the
total number of 3C records (45 in our case); L is the
number of samples in each 1C trace (400 in our case);
and the index k = 1, 2, and 3 corresponds to the X, Y, and

z j k, t( ), j 1 … N tr; k, , 1 2 3; t, , 1 … L, ,= = =

Z components. Thus, the first operation of the method
is to calculate the matrix

, (6)

corresponding to the system of overlapping frequency
bands. Figure 2a plots the initial 1C trace X-21 (j = 21,
k = 1), and Fig. 2b shows its decomposition (6).

2. Multilevel measure of nonstationary behavior.

Let (t) denote any component of the αth frequency
band of the scalar seismic trace zj, k(t). We take a moving

time window having the radius M(α) = int( ) of sam-
ples with the central point τ and calculate the variance
of the component of the αth band in the left and right
halves of the moving window:

(7)

Calculating the difference between the variances, we
sum these differences over all bands:

(8)

If statistic (8) has a local minimum for a certain
value of τ, this means that the behavior patterns of the
signal zj, k(t) to the left and to the right of the point τ sig-

z j k,
α( ) t( ), α 1 … αmax, ,=

z j k,
α( )

Tmax
α( )

σ j k,
α( ) τ L( )( )2

z j k,
α( ) t( )( )2

/M α( ),

t τ M
α( )–=

τ 1–

∑=

σ j k,
α( ) τ R( )( )2

z j k,
α( ) t( )( )2

/M α( ).
t τ 1+=

τ M
α( )+

∑=

µ j k,
α( ) τ( ) σ j k,

α( ) τ L( )( )2 σ j k,
α( ) τ R( )( )2

–[ ]
2
,=

µ j k, τ( ) µ j k,
α( ) τ( ).

α 1=

αmax

∑=

Values of the minimum and maximum periods of the first
17 overlapping wavelet packet frequency bands with a
length of six octaves

Band 
number 

α

Period Period Band 
number 

α

Period Period 

1 2.000 3.200 10 4.267 7.111

2 2.133 3.556 11 4.571 8.000

3 2.286 4.000 12 4.923 8.533

4 2.462 4.267 13 5.333 9.143

5 2.667 4.571 14 5.818 9.846

6 2.909 4.923 15 6.400 10.667

7 3.200 5.333 16 7.111 11.636

8 3.556 5.818 17 8.000 12.800

9 4.000 6.400

Tmin
α( ) Tmax

α( ) Tmin
α( ) Tmax

α( )
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Fig. 2. (a) Good trace X-21. (b) Its representation in 17 overlapping wavelet-packet frequency bands six octaves wide. (c) Behavior
of nonstationarity measures in each of the frequency bands; the lowermost plot (marked as “Sum”) is the sum of the nonstationarity
measures over all frequency bands and demonstrates the presence of arrival signals dominated by the S wave.
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nificantly diverge. The summation in formula (8)
ensures the suppression of strong noise components
uncorrelated with each other in different frequency
bands, so that the summation results in their mutual
suppression. However, some components of the arrival
signal are correlated in the majority of bands, and the
summation only strengthens pulsations in statistic (8)
related to arrival times. Figure 2c presents plots of

(τ) and µj, k(τ) for the trace X-21. Note that the vari-
ations in these measures for good seismic traces usually
take the form of two closely spaced peaks; this is quite
natural because the first peak marks the onset of the
wave arrival and the second peak marks its completion.

3. Quality control of 1C traces. The procedure of
automatic quality control of 1C traces uses three crite-
ria. The first criterion is based on the calculation of the
values

(9)

For good scalar traces, the median of statistic (8) is
determined by small background values, whereas its
maximum values correspond to wave arrivals and con-
siderably exceed the background. Therefore, the value
of (9) must be sufficiently small for good traces but
large for bad traces with chaotic or periodic behavior of
the signal. Thus, if

(10)

then, the 1C trace is classified as bad. The threshold
κmax is a parameter of the method, and we used the value
κmax = 0.04 in our example. Figure 3 shows the scalar
trace X-41, which is regarded as bad according to crite-
rion (10).

µ j k,
α( )

κ j k,
medianτ µ j k, τ( ){ }

maxτ µ j k, τ( ){ }
-------------------------------------------.=

κ j k, κmax,≥

The second criterion of quality is based on calculat-
ing the normalized entropy of the distribution of the
squared ordinary wavelet coefficients of the signal at
the first and the second detail levels. The normalized
entropy of a finite discrete distribution of probabilities
pi ≥ 0, i = 1, …, n,  = 1, is defined by the for-
mula

(11)

Thus, the values of En lie between 0 and 1. If pi is set
equal to squared wavelet coefficients for the first and
the second detail levels divided by the sum of all these
values and n is taken to be equal to the total number of
wavelet coefficients at the first two detail levels (at N = 2n,
this number is n = 3N/4), the value of (11) is then the
second criterion Enj, k for the entropy of the 1C trace
zj, k(t). If the trace shows chaotic high-frequency behav-
ior (“trembling”), the value of Enj, k is high. In other
words, if

(12)

the 1C trace is classified as bad. For the analysis of the
experimental data performed below, we use the thresh-
old Enmax = 0.25.

The third type of bad 1C traces can be called
“inflated” (e.g., X-03, X-39, and X-42); they are char-
acterized by an overly high intensity of low frequencies
and are identified by using the criterion of the low-to-

high frequency energy ratio. Let  denote the sum of
the squared wavelet coefficients at all detail levels with

numbers β > 3, and let  be the sum of squared coef-

pii 1=
n∑

En pi pi( )ln
i 1=

n

∑–
⎝ ⎠
⎜ ⎟
⎛ ⎞

/ n( ).ln=

En j k, Enmax,≥

E j k,
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E j k,
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Fig. 3. (a) Bad trace X-41. (b) Its representation in 17 overlapping wavelet-packet frequency bands six octaves wide. (c) Behavior
of nonstationarity measures in each frequency band; the lowermost plot (marked as “Sum”) is the sum of the nonstationarity mea-
sures over all frequency bands and demonstrates chaotic behavior.
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ficients at the first to third detail levels of the ordinary
(not packet) wavelet decomposition of the 1C trace
zj, k(t). We mean the ratio

(13)

which must be high for bad traces of the third type.
Thus, if

(14)

the 1C trace is considered bad. Below, we use the
threshold λmax = 2.75. If at least one of inequalities (10),
(12), or (14) is valid, the 1C trace is classified as bad
and is excluded from the subsequent analysis. The sca-
lar traces in Fig. 1 that are marked by a single exclama-
tion mark “!” were identified as bad at the stage of the
preliminary quality control.

4. Scale-dependent principal components. Three-
component traces all scalar components of which are
bad were excluded from the analysis. Three-component
traces in which only one scalar component passed the
preliminary quality test were included in the data anal-
ysis, but only this 1C trace was analyzed. Yet, if a 3C
trace contains two or three good components, it is pos-

λ j k, E j k,
L( )/E j k,

H( ),=

λ j k, λmax,≥

sible to subsequently use the method of principal com-
ponents (the polarization analysis). Principal compo-
nents of such 3C traces are calculated for each of the
wavelet-packet frequency bands (6).

For each αth wavelet-packet frequency band, the
principal component is calculated in a moving time

window of the radius mp , where mp is a parameter

of the algorithm and  is the maximum period of the
wavelet packet band (in units of the sampling interval;
see the table). For each position of the moving time
window, we calculated a sample estimate of the covari-
ance matrix 2 × 2 or 3 × 3 in size (depending on how
many scalar components passed the quality test), found
the eigenvector corresponding to the maximum eigen-
value, and calculated the projection of the 2- or 3-D
vector of seismic vibrations onto this eigenvector. The
result of this procedure, the principal component of the
1C trace, is saved only for the central point of the mov-
ing time window. For the first window, adjacent to the
beginning of the record, the principal component is
saved for the time moments in the first half of the win-
dow (including the central point); for the last window,

Tmax
α( )

Tmax
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Fig. 4. (a) Good 3C trace no. 21. (b) Its principal components in 17 overlapping wavelet-packet frequency bands six octaves wide.
(c) Behavior of nonstationarity measures in each frequency band; the lower plot (marked as “Sum”) is the sum of the nonstationarity
measures over all frequency bands and demonstrates the presence of arrival signals dominated by the S wave. (d) The same plot as
in Fig. 4c but constructed for times that strictly precede S arrivals and are diminished by δts; the lower plot (marked as “Sum”) is
the sum of the nonstationarity measures over all frequency bands and is used for the detection of the P wave arrival.
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adjacent to the end of the record, it is saved for the
second half of the window. Figures 4a and 4b present
the good 3C trace no. 21 and its principal compo-
nents in all wavelet-packet frequency bands; Figs. 5a
and 5b present similar plots for the partially good 3C
trace no. 43.

5. Multilevel measures of nonstationarity for
principal components. The measures of nonstation-
ary behavior of a scalar trace introduced above by
formulas (7) and (8) can be calculated in a similar way
for scale-dependent principal components of each 3C

trace. We denote these measures by (τ) and µj(τ);
the index k for distinguishing the X, Y, and Z compo-
nents is omitted because it is unnecessary in this case.
If a 3C trace has only one good 1C component, the
measure used for this trace is calculated earlier by for-
mulas (7) and (8). Figures 4c and 5c plot the depen-

dences (τ) and µj(τ).

6. Initial estimates of S wave arrival times. The
method first determines S wave arrival times because

µ j
α( )

µ j
α( )

they are, on average, more intense and are, therefore,
easier to detect. Let j denote the number of a good or a
partially good 3C trace; i.e., it is possible to analyze the
statistic µj(τ). Furthermore, let ξ be the center of the

time window of radius equal to Mb = 1.5  samples
used for the analysis of variations in the statistic

(τ). We emphasize that the formula for Mb contains
the maximum period for the last, lowest frequency
wavelet-packet band numbered αmax. Let  denote the
average of µj(τ) calculated over all τ values, and let
νj(ξ) be the average of µj(τ) calculated in a moving
time window centered at the point ξ. The method for
determining the initial estimates of S wave arrivals is
based on the identification of time moments at which
νj(ξ) exceeds the threshold ρ , which is equal to the

product of the general average value of  and a coef-
ficient ρ. The values of ρ range from 2 to 3 and are taken
at a fairly small constant step. Note that, in some traces,
P waves can have an energy comparable to or even
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Fig. 5. (a) Partially good 3C trace no. 43. (b) Its principal components in 17 overlapping wavelet-packet frequency bands six octaves
wide. (c) Behavior of nonstationarity measures in each frequency band; the lower plot (marked as “Sum”) is the sum of the nonsta-
tionarity measures over all frequency bands and demonstrates the presence of arrival signals dominated by the S wave. (d) The same
plot as in Fig. 5(c) but constructed for times that strictly precede the arrival of S waves and are diminished by δts; the lowermost
plot (marked as “Sum”) is the sum of nonstationarity measures over all frequency bands and is used for the detection of P wave
arrival.
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higher than that of S waves. To avoid misidentification
of P wave arrivals as S wave arrivals in these cases, the
analysis of peak values of the statistic µj(τ) is applied
backward in time, from the end of the record to its
beginning. Thus, the time window moves from the end
of the time interval to its beginning and the first position

 of the window center ξ, such that νj(ξ) > ρ , is
sought for. The method then seeks the first time
moment  ∈ [  – Mb, ] of the first half of the
moving window such that µj(τ) exceeds 85% of the
quantile of the distribution of µj(τ) within the interval

t ∈ [  – Mb,  + Mb]. We should emphasize that 
also depends on the coefficient ρ used to determine the
threshold for moving averages of νj(ξ). Therefore, we

write  = (ρ). The optimum value of the parameter
ρ is found from the minimum variability condition for
values of (ρ) between adjacent traces:

(15)

ξ j* µ j

τ j* ξ j* ξ j*

ξ j* ξ j* τ j*

τ j* τ j*

τ j*

τ j* ρ( ) τ j 1–* ρ( )– minρ, ρ
j

∑ 2 3,[ ].∈

The values of (ρ), where ρ is found by solving
problem (15), are taken as the initial estimates of
S wave arrival times along the jth traces.

7. Estimation of the S wave traveltime curve. The
initial estimates of S wave arrival times are refined by
an iterative self-organizing procedure for the adjust-
ment of hyperbolic traveltime curves. A model hyper-
bolic traveltime curve is determined by the formula
[Hatton et al., 1986]

(16)

where  is the model value of the arrival time, j is the
number of the trace, and (T0, s, j0) are model parame-
ters, with s being the wave slowness. The model param-
eters are found from the solution of the problem

(17)

No correction is required for initial estimates of 

that lie within ±3 of the median distribution of the  –

| values in the neighborhood of the model traveltime

τ j*

T j* T0
2 s j j0–( )( )2+ ,=
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Fig. 6. Traveltime curves of (a) S and (b) P wave arrivals, with horizontal bars showing determination errors. Plot (a) shows the
variations in the multilevel statistic for all traces that were not classified as “completely bad” at the first stage of automatic quality
control; (b) the same measures of nonstationarity but constructed for times that strictly precede the arrival of S waves and are dimin-
ished by δts are shown for all traces that were not classified as “completely bad” at the second stage of quality control.
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curve with the parameters determined from (17). How-
ever, values of  lying outside this range are subjected
to a correction procedure: they are replaced by the
τ values that correspond to maximums of the statistic
µj(τ) for the arguments τ that lie within the above range.
After this correction, the adjustment procedure (17) is
repeated until it is no longer necessary to correct all val-
ues of . If the initial estimates of  are more than
±4 medians away from the model traveltime curve,
these traces are classifies as bad and are excluded from
the analysis; this is the second, final stage of the auto-
matic quality control. The traces rejected at the second
stage are marked in Fig. 1 by a double exclamation
mark “!!.”

If the traveltime curve with parameters adjusted by
(17) has a minimum within the profile, i.e., 1 < j0 < Ntr,
the neighborhood of the trace j0 is unfavorable for
applying the method of principal components because
it contains strongly correlated noise from the near P
wave arrival. In this situation, the use of variations in
the measures µj, k(τ) for individual scalar components
can give a more accurate determination of the S arrival
as compared with the use of the measure µj(τ) for the
principal component. Thus, for good or partially good
3C traces with the number j such that |j – j0 | < 5, the
iterative method of correcting and adjusting the hyper-
bolic traveltime curve includes an analysis of peak val-
ues of the statistics µj, k(τ) for the good scalar compo-
nents k together with peak values of the statistics µj(τ)
for the principal component. In comparing these statis-
tics, preference is given to the one for which the 85%
quantile of variations in the measures realizes the min-
imum distance from the model traveltime curve after
adjusting its parameters; it is precisely this value that is
taken for correction (if it is necessary).

8. Initial estimates of P wave arrival times.
P wave arrival times are sought after the determination
of the S wave traveltime curve. The method is quite
similar to the determination of the S wave traveltime
curve, except that the initial estimates of P arrival times
are sought from variations in the statistics µj(τ) not for all
values of τ but only for those that satisfy the inequality

(18)

where  is the time of the S wave traveltime curve
along the jth trace. Figures 4d and 5d plot the measures

(τ) and µj(τ) for the time moments τ ≤  – δts
used to determine the initial estimates of P arrival
times. Note that the plots in Figs. 4d and 5d correspond
to the same variations as in Figs. 4c and 5c, but they are
not visible against the background of the much stronger
variations associated with S arrivals. Only the construc-

tion of plots at the times τ ≤  – δts made the preced-
ing variation distinguishable.

τ j*

τ j* τ j*

τ ts
j( ) 2Tmax

αmax( )
–< ts

j( ) δts,–≡

ts
j( )

µ j
α( ) ts

j( )

ts
j( )

9. Estimation of P wave traveltime curves. The
P wave traveltime curve is determined by the same
method of iterations with adjusting the model of the
hyperbolic traveltime curve as that used for S waves,
but the P wave slowness to be determined should not
exceed the previously found S wave slowness divided

by . Figure 6 shows plots of both traveltime curves
along with their errors amounting to three-median devi-
ations of the initial estimates from the final S and
P traveltime curves.

To summarize, the full list of parameters of the
method is as follows:

(1) p, the number of octaves in overlapping wavelet-
packet frequency bands;

(2) αmax, the maximum number of wavelet packet
bands;

(3) κmax, the threshold for the application of cri-
terion (10) of automatic quality control;

(4) Enmax, the threshold for the application of
entropy criterion (12);

(5) λmax, the threshold for the application of energy
criterion (12); and

(6) mp, the parameter defining the radius of the
scale-dependent moving time window for the calcula-
tions of the principal components.

CONCLUSIONS

A method is developed and tested for the automatic
identification of P and S wave arrival times in problems
of passive seismic monitoring in borehole seismics
with a low signal-to-noise ratio and numerous defective
single-component traces. The method combines the
ideas of wavelet-packet decomposition of seismic
records and polarization analysis. The newly developed
ideas of the automatic classification of defective traces
and the accumulation of useful information by calculat-
ing the sum of variations in multilevel measures of non-
stationarity can find use in monitoring problems of
weak seismic events.
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