Communications in Mathematics and Applications

Volume 3 (2012), Number 3, pp. 223-242
(C) RGN Publications

Periodic Wavelets in Walsh Analysis

Yu. A. Farkov

Abstract

The main aim of this paper is to present a review of periodic wavelets related to the generalized Walsh functions on the p-adic Vilenkin group G_{p}. In addition, we consider several examples of wavelets in the spaces of periodic complex sequences. The case $p=2$ corresponds to periodic wavelets associated with the classical Walsh functions.

1. Introduction

Let \mathbb{Z}_{p} be the discrete cyclic group of order p, i.e., the set $\{0,1, \ldots, p\}$ with the discrete topology and modulo p addition. The p-adic Vilenkin group G is defined to be the subgroup of $\prod_{j \in \mathbb{Z}} \mathbb{Z}_{p}$ consisting of sequences

$$
x=\left(x_{j}\right)=\left(\ldots, x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots\right),
$$

for which there exists $k=k(x) \in \mathbb{Z}$ such that $x_{j}=0$ for all $j<k$. The group operation on G is denoted by \oplus and defined as the coordinate-wise addition modulo p :

$$
\left(z_{j}\right)=\left(x_{j}\right) \oplus\left(y_{j}\right) \Longleftrightarrow z_{j}=x_{j}+y_{j}(\bmod p) \quad \text { for all } j \in \mathbb{Z}
$$

Let us denote the inverse operation of \oplus by \ominus (so that $x \ominus x=\theta$, where θ is the zero sequence). One can put a topology on G as the product topology inherits from $\prod_{j \in \mathbb{Z}} \mathbb{Z}_{p}$. The group G is a locally compact abelian group and the sets

$$
U_{l}:=\left\{\left(x_{j}\right) \in G \mid x_{j}=0 \text { for } j \leq l\right\}, \quad l \in \mathbb{Z}
$$

form a complete system neighbourhoods of the zero sequence. Notice also that

$$
U_{l+1} \subset U_{l} \text { for } l \in \mathbb{Z}, \quad \bigcap U_{l}=\{\theta\}, \quad \bigcup U_{l}=G
$$

[^0]One can show that G is self-dual. The duality pairing on G takes $x=\left(x_{j}\right)$ and $\omega=\left(\omega_{j}\right)$ to

$$
\chi(x, \omega)=\exp \left(\frac{2 \pi i}{p} \sum_{j \in \mathbb{Z}} x_{j} \omega_{1-j}\right) .
$$

Consider $U=U_{0}$ as a subgroup of G. This subgroup, when $p=2$, is isomorphic to the Cantor group, which is the topological Cartesian product of countably many cyclic groups of order 2 with discrete topology. It is well-known that U is a perfect nowhere-dense totally disconnected metrizable space and, therefore, U is homeomorphic to the Cantor ternary set (e.g., [6, Chapter 14]). There exists a Haar measure on G normalized so that the measure of U is 1 . For simplicity, we shall denote this measure by $d x$.

As usual, the Lebesgue space $L^{2}(G)$ consists of all square integrable functions on G. For each function $f \in L^{1}(G) \cap L^{2}(G)$, its Fourier transform \widehat{f},

$$
\widehat{f}(\omega)=\int_{G} f(x) \overline{\chi(x, \omega)} d x, \quad \omega \in G
$$

belongs to $L^{2}(G)$. The Fourier operator

$$
\mathscr{F}: L^{1}(G) \cap L^{2}(G) \rightarrow L^{2}(G), \quad \mathscr{F} f=\widehat{f}
$$

extends uniquely to the whole space $L^{2}(G)$. See [22] and [33] for further details about harmonic analysis on the group G.

Consider the mapping $\lambda: G \rightarrow \mathbb{R}_{+}$defined by

$$
\lambda(x)=\sum_{j \in \mathbb{Z}} x_{j} p^{-j}, \quad x=\left(x_{j}\right) \in G
$$

Take in G a discrete subgroup $H=\left\{\left(x_{j}\right) \in G \mid x_{j}=0\right.$ for $\left.j>0\right\}$. The image of the subgroup H under λ is the set of non-negative integers: $\lambda(H)=\mathbb{Z}_{+}$. For each $k \in \mathbb{Z}_{+}$, let $h_{[k]}$ denote the element of H such that $\lambda\left(h_{[k]}\right)=k$ (clearly, $h_{[0]}=\theta$). The generalized Walsh functions on G can be defined by

$$
w_{k}(x)=\chi\left(x, h_{[k]}\right), \quad x \in G, k \in \mathbb{Z}_{+} .
$$

So, these functions are characters for G. Also, it is well-known that $\left\{w_{k} \mid k \in \mathbb{Z}_{+}\right\}$is an orthonormal basis for $L^{2}(U)$ (when $p=2$, we have the classical Walsh system).

Using the elements of H as translations, one can study wavelets in $L^{2}(G)$. Orthogonal wavelets and refinable functions representable as lacunary Walsh series were introduced for the first time by Lang [24] in the context of the Cantor dyadic group and, subsequently, they have been extended and studied by several authors (see, e.g., [7]-[19], [31], [32], [37], [38]). Multiresolution analysis of functions defined on the Cantor dyadic group was studied independently by Bl. Sendov ([34]-[36]). Wavelets on the p-adic Vilenkin group G by means of an iterative method giving rise to so-called wavelet sets were derived by J.J. Benedetto
and R.L. Benedetto [2]. At the same time, an approach developed in [2] can be applied to wavelets on the additive group of p-adic numbers (cf. [1], [23], [25], [39]).

This paper is a continuation of our review [18], where among the main subjects are the following:

- algorithms to construct orthogonal and biorthogonal wavelets associated with the Walsh polynomials;
- estimates of the smoothness of dyadic orthogonal wavelets of Daubechies type;
- an algorithm for constructing Parseval dyadic frames.

The aim of this paper is to present a review of periodic wavelets related to the generalized Walsh functions. In Section 2, by analogy with the periodic wavelets on the line \mathbb{R} (see, e.g., [4], [5], [20], [27]-[30], [40], [41]), we define periodic wavelets on G and consider the corresponding algorithms for decomposition and reconstruction. Similar results for the case $p=2$ are given in the recent papers [11] and [19]. Then, in Section 3, we use the generalized Walsh functions to define wavelets in the space \mathbb{C}_{N} consisting of all sequences $x=(\ldots, x(-1), x(0), x(1), x(2), \ldots)$, such that $x(j+N)=x(j)$ for all $j \in \mathbb{Z}$ (cf. [3], [13], [21], [29]).

2. Periodic wavelets on the p-adic Vilenkin group

To keep our notation simple, we write $N:=p^{n}$ and $\varepsilon_{p}:=\exp (2 \pi i / p)$. Define an automorphism $A \in \operatorname{Aut} G$ by the formula $(A x)_{j}=x_{j+1}$ for all $x=\left(x_{j}\right) \in G$. Then, for $0 \leq k \leq N-1$, we let $x_{n, k}:=A^{-n} h_{[k]}$ and $U_{k}^{(n)}:=x_{n, k}+A^{-n}(U)$. It is easily seen that the sets $U_{k}^{(n)}$ are cosets of the subgroup $A^{-n}(U)$ in the group U, and that

$$
U_{k}^{(n)} \cap U_{l}^{(n)}=\emptyset \quad \text { for } k \neq l, \quad \bigcup_{k=0}^{N-1} U_{k}^{(n)}=U
$$

Moreover, it is clear that $w_{l}(x)$ with $0 \leq l \leq N-1$ is constant on $U_{k}^{(n)}$ for each $0 \leq k \leq N-1$. We shall use the notation

$$
w_{l, k}^{(n)}:=w_{l}\left(x_{n, k}\right) \quad \text { for } 0 \leq l, k \leq N-1
$$

Notice that

$$
\begin{align*}
& w_{l, k}^{(n)}=w_{k, l}^{(n)}=\varepsilon_{p}^{-s q} w_{p k+s, N q+l}^{(n+1)}, \quad 0 \leq s, q \leq p-1 \tag{2.1}\\
& \sum_{i=0}^{N-1} w_{i, l}^{(n)} \overline{w_{i, k}^{(n)}}=\sum_{j=0}^{N-1} w_{l, j}^{(n)} \overline{w_{k, j}^{(n)}}=N \delta_{l, k}, \quad 0 \leq l, k \leq N-1 \tag{2.2}
\end{align*}
$$

A finite sum

$$
D_{N}(x):=\sum_{j=0}^{N-1} w_{j}(x), \quad x \in G
$$

is called the Walsh-Dirichlet kernel of order N. It is well-known that

$$
D_{N}(x)= \begin{cases}N, & x \in U_{0}^{(n)} \\ 0, & x \in U \backslash U_{0}^{(n)}\end{cases}
$$

Let us introduce the following spaces

$$
\begin{aligned}
& V_{n}:=\operatorname{span}\left\{1, w_{1}(x), \ldots, w_{N-1}(x)\right\}, \\
& W_{n}^{(j)}:=\operatorname{span}\left\{w_{j N}(x), w_{j N+1}(x), \ldots, w_{(j+1) N-1}(x)\right\},
\end{aligned}
$$

where $j=1, \ldots, p-1$. Note that the orthogonal direct sum of $V_{n}, W_{n}^{(1)}, \ldots, W_{n}^{(p-1)}$ coincides with V_{n+1}, that is, for $W_{n}:=W_{n}^{(1)} \bigoplus \cdots \bigoplus W_{n}^{(p-1)}$, we have $V_{n} \bigoplus W_{n}=$ V_{n+1}. The spaces V_{n} and $W_{n}^{(j)}$ will be called the approximation spaces and wavelet spaces, respectively.

We can use the discrete Vilenkin-Chrestenson transform to recover $v \in V_{n}$ from the values $v\left(x_{n, l}\right), 0 \leq l \leq N-1$. Indeed, if

$$
\begin{equation*}
v(x)=\sum_{k=0}^{N-1} c_{k} w_{k}(x), \quad x \in U \tag{2.3}
\end{equation*}
$$

then

$$
\begin{equation*}
c_{k}=\frac{1}{N} \sum_{l=0}^{N-1} v\left(x_{n, l}\right) \overline{w_{l, k}^{(n)}}, \quad 0 \leq k \leq N-1 ; \tag{2.4}
\end{equation*}
$$

see, e.g., [22, Section 11.2], where the corresponding fast algorithm is given.
Suppose that $a=\left(a_{0}, a_{1}, \ldots, a_{N-1}\right)$, where $a_{k} \neq 0,0 \leq k \leq N-1$. Then we set

$$
\Phi_{N}^{a}(x):=\frac{1}{N} \sum_{k=0}^{N-1} a_{k} w_{k}(x), \quad \varphi_{n, k}(x):=\Phi_{N}^{a}\left(x \ominus x_{n, k}\right), \quad 0 \leq k \leq N-1, x \in G .
$$

Proposition 2.1. Let $v \in V_{n}$. Assume that

$$
\begin{equation*}
\alpha_{n, k}=\alpha_{n, k}(v):=\sum_{l=0}^{N-1} a_{l}^{-1} c_{l} w_{l, k}^{(n)}, \quad 0 \leq k \leq N-1 \tag{2.5}
\end{equation*}
$$

where c_{l} are defined as in (2.4). Then

$$
\begin{equation*}
v(x)=\sum_{k=0}^{N-1} \alpha_{n, k} \varphi_{n, k}(x) \tag{2.6}
\end{equation*}
$$

Proof. According to (2.2), for any $v \in V_{n}$ we get

$$
\sum_{k=0}^{N-1} w_{l, k}^{(n)} \varphi_{n, k}(x)=a_{l} w_{l}(x), \quad 0 \leq l \leq N-1
$$

and, in view of (2.3), (2.4) and (2.5),

$$
v(x)=\sum_{l=0}^{N-1} \sum_{j=0}^{N-1} a_{l}^{-1} c_{l} w_{l, j}^{(n)} \varphi_{n, j}(x)=\sum_{k=0}^{N-1} \alpha_{n, k} \varphi_{n, k}(x) .
$$

Therefore, the expansion in (2.6) is valid for all $v \in V_{n}$.
Remark 2.1 (cf. [40, Proposition 9]). Suppose that $\widetilde{\varphi}_{n, k}$ are defined by

$$
\widetilde{\varphi}_{n, 0}(x)=\sum_{j=0}^{N-1} \bar{a}_{j}^{-1} w_{j}(x), \widetilde{\varphi}_{n, k}(x)=\widetilde{\varphi}_{n, 0}\left(x \ominus x_{n, k}\right), \quad k=1, \ldots, N-1
$$

Then $\left\{\tilde{\varphi}_{n, k}\right\}_{k=0}^{N-1}$ is a dual shift basis for $\left\{\varphi_{n, k}\right\}_{k=0}^{N-1}$. Indeed, using (2.3) and (2.5), for any $v \in V_{n}$ we have

$$
\begin{aligned}
\left(v, \widetilde{\varphi}_{n, k}\right) & :=\int_{U} v(x), \overline{\widetilde{\varphi}_{n, k}(x)} d x \\
& =\int_{U}\left(\sum_{l} c_{l} w_{l}(x)\right) \overline{\widetilde{\varphi}_{n, 0}\left(x \ominus x_{n, k}\right)} d x \\
& =\int_{U}\left(\sum_{l} c_{l} w_{l}(x)\right)\left(\overline{\sum_{l} \overline{a_{l}^{-1} w_{l, k}^{(n)}} w_{l}(x)}\right) d x \\
& =\alpha_{n, k}(v),
\end{aligned}
$$

where the last equality follows from the orthogonality of the system $\left\{w_{k} \mid k \in \mathbb{Z}_{+}\right\}$.
Let $b=\left(b_{0}, b_{1}, \ldots, b_{p N-1}\right)$, where $b_{k} \neq 0$ for all $0 \leq k \leq p N-1$. In particular, we can choose

$$
b_{k}=\left\{\begin{array}{ll}
a_{k / p} & \text { if } k \text { is divisible by } p, \\
1 & \text { if } k \text { is not divisible by } p
\end{array} \quad \text { or } \quad b_{k}= \begin{cases}a_{k} & \text { if } k \leq N-1 \\
1 & \text { if } 0 \leq k \leq p N-1\end{cases}\right.
$$

We set

$$
\varphi_{n+1, k}(x):=\Phi_{p N}^{b}\left(x \ominus x_{n+1, k}\right), \quad 0 \leq k \leq p N-1
$$

where

$$
\Phi_{p N}^{b}(x):=\frac{1}{p N} \sum_{k=0}^{p N-1} b_{k} w_{k}(x), \quad x \in G .
$$

Then we define

$$
\psi_{n, k}^{(j)}(x):=\sum_{s=0}^{p-1} \varepsilon_{p}^{j s} \varphi_{n+1, p k+s}(x), \quad 0 \leq k \leq N-1,1 \leq j \leq p-1 .
$$

Let us show that, for each j, the system $\left\{\psi_{n, k}^{(j)}\right\}_{k=0}^{N-1}$ is a bases for the corresponding wavelet space $W_{n}^{(j)}$.

Proposition 2.2. Suppose that $w \in W_{n}^{(j)}$ for some $j \in\{1, \ldots, p-1\}$. Then

$$
\begin{equation*}
w(x)=\sum_{k=0}^{N-1} \beta_{n, k}^{(j)} \psi_{n, k}^{(j)}(x) \tag{2.7}
\end{equation*}
$$

where, with the notation as in (2.4),

$$
\begin{equation*}
\beta_{n, k}^{(j)}=\beta_{n, k}^{(j)}(w)=\sum_{l=0}^{N-1} b_{j N+l}^{-1} c_{j N+l} w_{j N+l, p k}^{(n+1)}, \quad 0 \leq k \leq N-1 . \tag{2.8}
\end{equation*}
$$

Proof. Let $w \in W_{n}^{(j)}$ where $j \in\{1, \ldots, p-1\}$. Then, since $W_{n}^{(j)} \subset V_{n+1}$, as in Proposition 2.1 we have

$$
\begin{align*}
w(x) & =\sum_{l=j N}^{(j+1) N-1} c_{l} w_{l}(x) \\
& =\sum_{k=0}^{p N-1} \alpha_{n+1, k}(w) \varphi_{n+1, k}(x) \\
& =\sum_{s=0}^{p-1} \sum_{k=0}^{N-1} \alpha_{n+1, p k+s}(w) \varphi_{n+1, p k+s}(x), \tag{2.9}
\end{align*}
$$

where

$$
\begin{aligned}
\alpha_{n+1, p k+s}(w) & =\sum_{l=0}^{N-1} b_{j N+l}^{-1} c_{j N+l} w_{j N+l, p k+s}^{(n+1)}, \\
c_{j N+l} & =\frac{1}{p N} \sum_{l=0}^{p N-1} w\left(x_{n+1, l}\right) \overline{w_{l, j N+l}^{(n+1)}} .
\end{aligned}
$$

Here, in view of (2.1), $w_{j N+l, p k+s}^{(n+1)}=\varepsilon_{p}^{j s} w_{j N+l, p k}^{(n+1)}$, and hence

$$
\alpha_{n+1, p k+s}(w)=\varepsilon_{p}^{j s} \alpha_{n+1, p k}(w), \quad 0 \leq k \leq N-1,0 \leq s \leq p-1,
$$

which by (2.8) and (2.9) yields (2.7).
Let $\alpha \neq 0$. Propositions 2.1 and 2.2 for the case where

$$
a_{k}= \begin{cases}\alpha & \text { if } k=0 \text { or } k=N-1 \tag{2.10}\\ 1 & \text { otherwise }\end{cases}
$$

can be found in [15]. In this case, we set

$$
b_{k}= \begin{cases}\alpha & \text { if } k=0 \text { or } k=p N-1 \\ 1 & \text { otherwise }\end{cases}
$$

Note that the value $\alpha=1$ corresponds to the Haar wavelets (so, we use $\alpha \neq 1$ in the sequel).

For each $l \in\{0,1, \ldots, N-1\}$ with p-ary expansion

$$
l=\sum_{j=0}^{n-1} v_{j} p^{j}, \quad v_{j} \in\{0,1, \ldots, p-1\}
$$

we let $\gamma(l):=\sum_{j=0}^{n-1} v_{j}$. According to [15], in the case (2.10) we have the following equalities

$$
\begin{align*}
\varphi_{n, k}(x) & =\sum_{s=0}^{p-1} \varphi_{n+1, p k+s}(x)-\frac{(1-\alpha)}{N} \varepsilon_{p}^{-\gamma(k)} w_{N-1}(x) \tag{2.11}\\
\varphi_{n+1, p k+s}(x) & =\frac{1}{p}\left(\varphi_{n, k}(x)+\frac{1-\alpha}{\alpha N} \sum_{v=0}^{N-1} \varepsilon_{p}^{\gamma(v)-\gamma(k)} \varphi_{n, v}(x)\right)+\frac{1}{p} \sum_{j=1}^{p-1} \varepsilon_{p}^{-j s} \psi_{n, k}^{(j)}(x), \tag{2.12}
\end{align*}
$$

where $1 \leq k \leq N-1,0 \leq s \leq p-1$. Note also, that $w_{N-1}(x)$ can be expressed as

$$
\begin{equation*}
w_{N-1}(x)=\frac{1}{\alpha} \sum_{s=0}^{N-1} \varepsilon_{p}^{\gamma(s)} \varphi_{n, s}(x)=\sum_{k=0}^{N-1} \sum_{s=0}^{p-1} \gamma_{n+1, p k+s} \varphi_{n+1, p k+s}(x), \tag{2.13}
\end{equation*}
$$

where $\gamma_{n+1, p k+s}:=w_{N-1, p k+s}^{(n+1)}$.
For any functions $f_{n} \in V_{n}$ and $g_{n} \in W_{n}$ we write

$$
\begin{equation*}
f_{n}(x)=\sum_{k=0}^{N-1} C_{n, k} \varphi_{n, k}(x), \quad g_{n}(x)=\sum_{j=0}^{p-1} g_{n}^{(j)}(x) \tag{2.14}
\end{equation*}
$$

where

$$
g_{n}^{(j)}(x)=\sum_{k=0}^{N-1} D_{n, k}^{(j)} \psi_{n, k}(x)
$$

and the coefficient sequences

$$
\begin{equation*}
\mathbf{C}_{n}=\left\{C_{n, k}\right\}, \quad \mathbf{D}_{n}^{(j)}=\left\{D_{n, k}^{(j)}\right\}, \quad 1 \leq j \leq p-1, \tag{2.15}
\end{equation*}
$$

uniquely determine f_{n} and g_{n}, respectively. Let us describe the algorithms, in terms of the coefficient sequences (2.15), for decomposing $f_{n+1} \in V_{n+1}$ as the orthogonal sum of $f_{n} \in V_{n}$ and $g_{n}^{(j)} \in W_{n}^{(j)}$, and for reconstructing f_{n+1} from f_{n} and $g_{n}^{(j)}$.

As a consequence of (2.12) we observe that

$$
\begin{equation*}
\varphi_{n+1, p k+s}(x)=\sum_{v=0}^{N-1} A_{p k+s, v}^{(n)} \varphi_{n, v}(x)+\sum_{j=1}^{p-1} B_{p k+s, j}^{(n)} \psi_{n, k}^{(j)}(x) \tag{2.16}
\end{equation*}
$$

where

$$
A_{p k+s, v}^{(n)}=\left\{\begin{array}{ll}
1 / p+(1-\alpha) /(\alpha p N), & v=k, \\
\varepsilon_{p}^{\gamma(v)-\gamma(k)}(1-\alpha) /(\alpha p N), & v \neq k
\end{array} \quad \text { and } \quad B_{p k+s, j}^{(n)}=p^{-1} \varepsilon_{p}^{-j s}\right.
$$

Since $f_{n}+g_{n}=f_{n+1}$, it follows from (2.14) and (2.16) that

$$
\begin{aligned}
& \sum_{v=0}^{N-1} C_{n, v} \varphi_{n, v}(x)+\sum_{j=1}^{p-1} \sum_{v=0}^{N-1} D_{n, v}^{(j)} \psi_{n, v}^{(j)}(x) \\
& \quad=\sum_{s=0}^{p-1} \sum_{k=0}^{N-1} C_{n+1, p k+s} \varphi_{n+1, p k+s}(x) \\
& \quad=\sum_{s, k} C_{n+1, p k+s}\left\{\sum_{v=0}^{N-1} A_{p k+s, v}^{(n)} \varphi_{n, v}(x)+\sum_{j=1}^{p-1} B_{p k+s, j}^{(n)} \psi_{n, k}^{(j)}(x)\right\} \\
& \quad=\sum_{v}\left\{\sum_{s, k} C_{n+1, p k+s} A_{p k+s, v}^{(n)}\right\} \varphi_{n, v}(x)+\sum_{j=1}^{p-1}\left\{\sum_{s, k} C_{n+1, p k+s} B_{p k+s, j}^{(n)}\right\} \psi_{n, k}^{(j)}(x)
\end{aligned}
$$

This implies that

$$
\begin{equation*}
C_{n, v}=\sum_{s, k} A_{p k+s, v}^{(n)} C_{n+1, p k+s}, \quad D_{n, v}^{(j)}=\sum_{s=0}^{p-1} B_{p v+s, j}^{(n)} C_{n+1, p v+s} . \tag{2.17}
\end{equation*}
$$

Now, using (2.11) and (2.13), we obtain

$$
\varphi_{n, v}(x)=\sum_{k=0}^{N-1} \sum_{s=0}^{p-1} Q_{p k+s, v}^{(n)} \varphi_{n+1, p k+s}(x)
$$

where

$$
Q_{p k+s, v}^{(n)}= \begin{cases}1-\varepsilon_{p}^{\gamma(k)}(1-\alpha) \gamma_{n+1, p k+s} / N, & k=v \\ -\varepsilon_{p}^{\gamma(k)}(1-\alpha) \gamma_{n+1, p k+s} / N, & k \neq v\end{cases}
$$

Therefore, we have

$$
\begin{aligned}
\sum_{k, s} & C_{n+1, p k+s} \varphi_{n+1, p k+s}(x) \\
& =\sum_{v} C_{n, v}\left\{\sum_{k, s} Q_{p k+s, v}^{(n)} \varphi_{n+1, p k+s}(x)\right\}+\sum_{j=1}^{p-1} \sum_{k=0}^{N-1} D_{n, k}^{(j)}\left\{\sum_{s=0}^{p-1} \varepsilon_{p}^{j s} \varphi_{n+1, p k+s}(x)\right\} \\
& =\sum_{k, s}\left\{\sum_{v} Q_{p k+s, v}^{(n)} C_{n, v}+\sum_{j} \varepsilon_{p}^{j s} D_{n, k}^{(j)}\right\} \varphi_{n+1, p k+s}(x)
\end{aligned}
$$

and so

$$
\begin{equation*}
C_{n+1, p k+s}=\sum_{v} Q_{p k+s, v}^{(n)} C_{n, v}+\sum_{j} \varepsilon_{p}^{j s} D_{n, k}^{(j)} \tag{2.18}
\end{equation*}
$$

We remark that the decomposition and reconstruction algorithms based on formulas (2.17) and (2.18) have more simply structure than the similar algorithms constructed in [5] for the case of trigonometric wavelets.

To conclude this section, let us consider the case where $p=2, N=2^{n}$, and

$$
b_{k}= \begin{cases}a_{k}, & 0 \leq k \leq N-1 \tag{2.19}\\ a_{N-k}, & N \leq k \leq 2 N-1\end{cases}
$$

with any $a_{k} \neq 0$. Then, for all $k \in\{0,1, \ldots, N-1\}$,

$$
\varphi_{n, k}(x)=\varphi_{n+1,2 k}(x)+\varphi_{n+1,2 k+1}(x), \quad \psi_{n, k}(x)=\varphi_{n+1,2 k}(x)-\varphi_{n+1,2 k+1}(x)
$$

and thus

$$
\varphi_{n+1,2 k}(x)=\frac{1}{2}\left[\varphi_{n, k}(x)+\psi_{n, k}(x)\right], \quad \varphi_{n+1,2 k+1}(x)=\frac{1}{2}\left[\varphi_{n, k}(x)-\psi_{n, k}(x)\right] .
$$

Hence, under the condition (2.19), instead of (2.17) and (2.18) we obtain the classical Haar discrete transforms.

3. Periodic discrete p-adic wavelets

Let us denote by $\langle k\rangle_{p}$ the remainder from the division of the integer k by the natural number p, and let $[a]$ be the integer part of a number a. For any $a \in \mathbb{R}_{+}$, the digits of the p-adic expansion

$$
\begin{equation*}
a=\sum_{v=1}^{\infty} a_{-v} p^{v-1}+\sum_{v=1}^{\infty} a_{v} p^{-v} \tag{3.1}
\end{equation*}
$$

are defined by $a_{-v}=\left\langle\left[p^{1-v} a\right]\right\rangle_{p}, a_{v}=\left\langle\left[p^{v} a\right]\right\rangle_{p}$ (so, the finite representation for a p-adic rational a is taken). We can easily see that, for each $a \in \mathbb{R}_{+}$there exists a natural number μ such that $a_{-v}=0$ for all $v>\mu$ as well as that the first sum in (3.1) is equal to [a]. The representation (3.1) induces the operation of addition modulo p (or p-adic addition) on \mathbb{R}_{+}as follows

$$
a \oplus_{p} b:=\sum_{v=1}^{\infty}\left\langle a_{-v}+b_{-v}\right\rangle_{p} p^{v-1}+\sum_{v=1}^{\infty}\left\langle a_{v}+b_{v}\right\rangle_{p} p^{-v}, \quad a, b \in \mathbb{R}_{+} .
$$

As usual, the equality $c=a \Theta_{p} b$ means that $c \oplus_{p} b=a$.
For $N=p^{n}$, we set $\mathbb{Z}_{N}=\{0,1, \ldots, N-1\}$. Suppose that the space \mathbb{C}_{N} consists of complex sequences $x=(\ldots, x(-1), x(0), x(1), x(2), \ldots)$, such that $x(j+N)=x(j)$ for all $j \in \mathbb{Z}$. An arbitrary sequence x from \mathbb{C}_{N} is given if the values of $x(j)$ are given for $j \in \mathbb{Z}_{N}$; therefore, the element x is often identified with the vector $(x(0), x(1), \ldots, x(N-1))$. The space \mathbb{C}_{N} is equipped with the following natural inner product:

$$
\langle x, y\rangle:=\sum_{j=0}^{N-1} x(j) \overline{y(j)}
$$

For an arbitrary $j \in \mathbb{Z}_{N}$, let j^{*} denote the nonnegative integer defined by the condition $j \oplus_{p} j^{*}=0$. For $p=2$, we have $j^{*}=j$, and, for $p>2$, the number j^{*} is p-adic opposite to j. For each $x \in \mathbb{C}_{N}$ we denote by \tilde{x} the vector from \mathbb{C}_{N} such that
$\widetilde{x}(j)=\overline{x\left(j^{*}\right)}$ for all $j \in \mathbb{Z}_{N}$. Further, for $k, j \in \mathbb{Z}_{N}$, we set $\{k, j\}_{p}:=\sum_{v=1}^{n} k_{v-n-1} j_{-v}$, where

$$
k=\sum_{v=1}^{n} k_{-v} p^{v-1}, \quad j=\sum_{v=1}^{n} j_{-v} p^{v-1}, \quad k_{-v}, j_{-v} \in\{0,1, \ldots, p-1\} .
$$

The Vilenkin-Chrestenson functions $w_{0}^{(N)}, w_{1}^{(N)}, \ldots, w_{N-1}^{(N)}$ for the space \mathbb{C}_{N} are defined by the equalities $w_{k}^{(N)}(j)=\varepsilon_{p}^{\{k, j\}_{p}}$ and $w_{k}^{(N)}(l)=w_{k}^{(N)}(l+N)$, where $k, j \in \mathbb{Z}_{N}, l \in \mathbb{Z}$. For $n \geq 2$ and $p=2$, the Vilenkin-Chrestenson functions coincide with the Walsh functions and, in the case $n=1$ and $p \geq 2$, they are exponential functions: $w_{k}^{(p)}(j)=\varepsilon_{p}^{k j}, k, j \in\{0,1, \ldots, p-1\}$.

The functions $w_{0}^{(N)}, w_{1}^{(N)}, \ldots, w_{N-1}^{(N)}$ constitute an orthogonal basis in \mathbb{C}_{N} and $\left\|w_{k}^{(N)}\right\|^{2}=N$ for all $k \in \mathbb{Z}_{N}$. To an arbitrary vector x from \mathbb{C}_{N} the VilenkinChrestenson transform assigns the sequence \widehat{x} of the Fourier coefficients of x in the system $w_{0}^{(N)}, w_{1}^{(N)}, \ldots, w_{N-1}^{(N)}$:

$$
\widehat{x}(k):=\frac{1}{N} \sum_{j=0}^{N-1} x(j) \overline{w_{k}^{(N)}(j)}, \quad k \in \mathbb{Z}_{N} .
$$

For all $x, y \in \mathbb{C}_{N}$, we define the p-convolution $x * y$ by the formula

$$
(x * y)(k):=\sum_{j=0}^{N-1} x\left(k \ominus_{p} j\right) y(j), \quad k \in \mathbb{Z}_{N}
$$

By a unit N-periodic impulse we mean the vector δ_{N} from \mathbb{C}_{N} defined by the equality

$$
\delta_{N}(j):= \begin{cases}1, & \text { if } j \text { is divisible by } N \\ 0, & \text { if } j \text { is not divisible by } N .\end{cases}
$$

The system of shifts $\left\{\delta_{N}\left(\cdot \ominus_{p} k\right) \mid k \in \mathbb{Z}_{N}\right\}$ is an orthonormal basis in \mathbb{C}_{N} and

$$
x(j)=\left(x * \delta_{N}\right)(j)=\sum_{k=0}^{N-1} x(k) \delta_{N}\left(j \ominus_{p} k\right), \quad j \in \mathbb{Z}_{N}
$$

for all $x \in \mathbb{C}_{N}$. For each $k \in \mathbb{Z}_{N}$ the p-adic shift operator $T_{k}: \mathbb{C}_{N} \rightarrow \mathbb{C}_{N}$ is defined as

$$
\left(T_{k} x\right)(j):=x\left(j \ominus_{p} k\right), \quad x \in \mathbb{C}_{N}, j \in \mathbb{Z}_{N} .
$$

It follows from the definitions that, for all $x, y \in \mathbb{C}_{N}$, the following relations hold:

$$
\begin{aligned}
& \langle x, y\rangle=N\langle\widehat{x}, \widehat{y}\rangle, \quad \widehat{x * y}=N \widehat{x} \widehat{y}, \quad \widehat{\left(T_{k} x\right)}(l)=\overline{w_{k}^{(N)}(l)} \widehat{x}(l), \\
& \left\langle y, T_{k} x\right\rangle=y * \widetilde{x}(k), \quad\left\langle T_{k} x, T_{l} y\right\rangle=\left\langle x, T_{l \ominus_{p} k} y\right\rangle, \quad k, l \in \mathbb{Z}_{N} .
\end{aligned}
$$

For $v=0,1, \ldots, n$, we set $N_{v}=N / p^{v}$ and $\Delta_{v}=p^{v-1}$. The operators $D: \mathbb{C}_{N} \rightarrow$ $\mathbb{C}_{N_{1}}$ and $U: \mathbb{C}_{N_{1}} \rightarrow \mathbb{C}_{N}$ given by the formulas

$$
(D x)(j):=x(p j), \quad j=0,1, \ldots, N_{1}-1,
$$

and

$$
(U y)(j):= \begin{cases}y(j / p) & \text { if } j \text { is divisible by } p \\ 0 & \text { if } j \text { is not divisible by } p\end{cases}
$$

where $x \in \mathbb{C}_{N}$ and $y \in \mathbb{C}_{N_{1}}$ are called the thickening sampling operator and the thinning sampling operator, respectively. Note that $D(U y)=y$ for all $y \in \mathbb{C}_{N_{1}}$. Further, suppose that $D^{1}=D, U^{1}=U$ and, for $v=2, \ldots, n$, we define the operators $D^{v}: \mathbb{C}_{N} \rightarrow \mathbb{C}_{N_{v}}$ and $U^{v}: \mathbb{C}_{N_{v}} \rightarrow \mathbb{C}_{N}$ by the formulas

$$
\left(D^{v} x\right)(j):=x\left(p^{v} j\right), \quad\left(U^{v} y\right)(j):= \begin{cases}y\left(j / p^{v}\right) & \text { if } j \text { is divisible by } p^{v} \\ 0 & \text { if } j \text { is not divisible by } p^{v}\end{cases}
$$

where $x \in \mathbb{C}_{N}$ and $y \in \mathbb{C}_{N_{v}}$. For any $y \in \mathbb{C}_{N_{v}}$, the following relation holds: $\widehat{U^{v} y}(l)=p^{-v} \widehat{y}(l), l \in \mathbb{Z}_{N}$, where, on the left-hand side, the Vilenkin-Chrestenson transform is taken in \mathbb{C}_{N}, while, on the righthand side, it is taken in $\mathbb{C}_{N_{v}}$.

Following the approach from [21, Chapter 3], we give the following definition.
Definition 3.1. Suppose that $u_{0}, u_{1}, \ldots, u_{p-1} \in \mathbb{C}_{N}$. If the system

$$
B\left(u_{0}, u_{1}, \ldots, u_{p-1}\right)=\left\{T_{p k} u_{0}\right\}_{k=0}^{N_{1}-1} \cup\left\{T_{p k} u_{1}\right\}_{k=0}^{N_{1}-1} \cup \cdots \cup\left\{T_{p k} u_{p-1}\right\}_{k=0}^{N_{1}-1}
$$

is an orthonormal basis in \mathbb{C}_{N}, then $B\left(u_{0}, u_{1}, \ldots, u_{p-1}\right)$ is called the wavelet basis of the first stage in \mathbb{C}_{N} generated by the collection of vectors $u_{0}, u_{1}, \ldots, u_{p-1}$.

The following theorem characterizes all the collections of vectors generating wavelet bases of the first stage in \mathbb{C}_{N}.

Theorem 3.1. The collection of vectors $u_{0}, u_{1}, \ldots, u_{p-1}$ generates a wavelet basis of the first stage in \mathbb{C}_{N} if and only if the matrix

$$
A(l):=\frac{N}{\sqrt{p}}\left(\begin{array}{cccc}
\widehat{u}_{0}(l) & \widehat{u}_{1}(l) & \ldots & \widehat{u}_{p-1}(l) \\
\widehat{u}_{0}\left(l+N_{1}\right) & \widehat{u}_{1}\left(l+N_{1}\right) & \ldots & \widehat{u}_{p-1}\left(l+N_{1}\right) \\
\widehat{u}_{0}\left(l+2 N_{1}\right) & \widehat{u}_{1}\left(l+2 N_{1}\right) & \ldots & \widehat{u}_{p-1}\left(l+2 N_{1}\right) \\
\vdots & \vdots & \ldots & \vdots \\
\widehat{u}_{0}\left(l+(p-1) N_{1}\right) & \widehat{u}_{1}\left(l+(p-1) N_{1}\right) & \ldots & \widehat{u}_{p-1}\left(l+(p-1) N_{1}\right)
\end{array}\right)
$$

is unitary for $l=0,1, \ldots, N_{1}-1$.
For each $1 \leq m \leq n$ we define the following procedure for the construction of a wavelet basis of the first stage in \mathbb{C}_{N}.
Step 1. Choose complex numbers $b_{l}, 0 \leq l \leq p^{m}-1$, satisfying the condition

$$
\begin{equation*}
\sum_{k=0}^{p-1}\left|b_{l+k p^{m-1}}\right|^{2}=1, \quad l=0,1, \ldots, p^{m-1}-1 \tag{3.2}
\end{equation*}
$$

Step 2. Calculate $a_{0}, \ldots, a_{p^{m}-1}$ by the formulas

$$
a_{j}=p^{-m+1 / 2} \sum_{l=0}^{p^{m}-1} \overline{b_{l}} \overline{w_{l}^{\left(p^{m}\right)}(j)}, \quad j=0,1, \ldots, p^{m}-1
$$

Step 3. Define a vector $u_{0} \in \mathbb{C}_{N}$, for which

$$
u_{0}(j)= \begin{cases}a_{j}, & 0 \leq j \leq p^{m}-1 \tag{3.3}\\ 0, & p^{m} \leq j \leq p^{n}-1\end{cases}
$$

Step 4. Find vectors $u_{1}, \ldots, u_{p-1} \in \mathbb{C}_{N}$ such that, for all $l=0,1, \ldots, N_{1}-1$, the matrix $A(l)$ is unitary.
Using Theorem 3.1, we can verify that the resulting collection of vectors $u_{0}, u_{1}, \ldots, u_{p-1}$ generates a wavelet basis of the first stage in \mathbb{C}_{N}. In the case $p=2$, step 4 of this procedure is carried out by the formula

$$
\begin{equation*}
u_{1}(j)=(-1)^{j} \overline{u_{0}\left(1 \oplus_{2} j\right)}, \quad j \in \mathbb{Z}_{N} \tag{3.4}
\end{equation*}
$$

for $p>2$, algorithms for the realization of this step were given in [28, Section 2.6] (see also [14, Section 2]). One of these algorithms is based on the Hausholder transform and can be described by the formulas

$$
\begin{align*}
\widehat{u}_{k}(l) & =\overline{\widehat{u}_{0}\left(l+k N_{1}\right)} \frac{1-\widehat{u}_{0}(l)}{1-\widehat{\widehat{u}}_{0}(l)} \tag{3.5}\\
\widehat{u}_{k}\left(l+j N_{1}\right) & =\delta_{k j}-\frac{\widehat{u}_{0}\left(l+j N_{1}\right) \overline{\widehat{u}_{0}\left(l+k N_{1}\right)}}{1-\widehat{\widehat{u}}_{0}(l)} \tag{3.6}
\end{align*}
$$

where $\delta_{k j}$ is the Kronecker delta, $k, j=1,2, \ldots, p-1$ and $l=0,1, \ldots, N_{1}-1$.
Example 3.1. Suppose that $N>p$. Take $m=1$ and $b_{0}=1, b_{1}=\cdots=b_{p-1}=0$. Then the system $B\left(u_{0}, u_{1}, \ldots, u_{p-1}\right)$ is generated by the vectors

$$
u_{\mu}=p^{-1 / 2}\left(1, \varepsilon_{p}^{\mu}, \varepsilon_{p}^{2 \mu}, \ldots, \varepsilon_{p}^{(p-1) \mu}, 0,0, \ldots, 0\right), \quad \mu=0,1, \ldots, p-1
$$

In particular, for $p=2$, we have the Haar basis of the first stage in \mathbb{C}_{N} :

$$
u_{0}=(1 / \sqrt{2}, 1 / \sqrt{2}, 0,0, \ldots, 0), \quad u_{1}=(1 / \sqrt{2},-1 / \sqrt{2}, 0,0, \ldots, 0)
$$

The following example is obtained by modifying the orthogonal wavelets constructed for the Cantor group in [24]; it corresponds to the case $m=p=2$, $b_{0}=1, b_{1}=a, b_{2}=0, b_{3}=b$ in the procedure described above.
Example 3.2. Suppose that a and b are complex numbers such that $|a|^{2}+|b|^{2}=1$. Suppose that $p=2$ and $N \geq 4$, and the vectors $u_{0}, u_{1} \in \mathbb{C}_{N}$ are given by the equalities

$$
\begin{array}{lll}
u_{0}(0)=\frac{1+a+b}{2 \sqrt{2}}, & u_{0}(1)=\frac{1+a-b}{2 \sqrt{2}}, & u_{0}(2)=\frac{1-a-b}{2 \sqrt{2}},
\end{array} \quad u_{0}(3)=\frac{1-a+b}{2 \sqrt{2}}, ~ \begin{array}{ll}
2 \sqrt{2} & u_{1}(1)=-\frac{1+a+b}{2 \sqrt{2}},
\end{array} u_{1}(2)=\frac{1-a+b}{2 \sqrt{2}}, \quad u_{1}(3)=-\frac{1-a-b}{2 \sqrt{2}},
$$

under the condition that $u_{0}(j)=u_{1}(j)=0$ for $4 \leq j \leq N-1$. Then the vectors u_{0}, u_{1} generate a wavelet basis of the first stage in \mathbb{C}_{N}. Note that, for $a=1, b=0$, the resulting wavelet basis $B\left(u_{0}, u_{1}\right)$ coincides with the Haar wavelet basis of the first stage described in Example 3.1.

The following two examples are similar to Examples 3 and 4 in [8].
Example 3.3. Suppose that $p=2, n>3$, and $m=3$. We set

$$
\left(b_{0}, b_{1}, \ldots, b_{7}\right)=\frac{1}{2}(1, a, b, c, 0, \alpha, \beta, \gamma),
$$

where $|a|^{2}+|\alpha|^{2}=|b|^{2}+|\beta|^{2}=|c|^{2}+|\gamma|^{2}=1$. Then, by relation (3.3), we have

$$
\begin{aligned}
& u_{0}(0)=\frac{1}{4 \sqrt{2}}(1+a+b+c+\alpha+\beta+\gamma) \\
& u_{0}(1)=\frac{1}{4 \sqrt{2}}(1+a+b+c-\alpha-\beta-\gamma) \\
& u_{0}(2)=\frac{1}{4 \sqrt{2}}(1+a-b-c+\alpha-\beta-\gamma) \\
& u_{0}(3)=\frac{1}{4 \sqrt{2}}(1+a-b-c-\alpha+\beta+\gamma) \\
& u_{0}(4)=\frac{1}{4 \sqrt{2}}(1-a+b-c-\alpha+\beta-\gamma) \\
& u_{0}(5)=\frac{1}{4 \sqrt{2}}(1-a+b-c+\alpha-\beta+\gamma) \\
& u_{0}(6)=\frac{1}{4 \sqrt{2}}(1-a-b+c-\alpha-\beta+\gamma) \\
& u_{0}(7)=\frac{1}{4 \sqrt{2}}(1-a-b+c+\alpha+\beta-\gamma)
\end{aligned}
$$

Further, we set $u_{1}(j)=u_{0}(j)=0$ for $8 \leq j \leq 2^{n}-1$, and we choose the other components of the vector u_{1} so that relations (3.4) are valid, i.e.,

$$
\begin{array}{lll}
u_{1}(0)=\overline{u_{0}(1)}, & u_{1}(1)=-\overline{u_{0}(0)}, & u_{1}(2)=\overline{u_{0}(3)}, \\
u_{1}(3)=-\overline{u_{0}(2)} \\
u_{1}(4)=\overline{u_{0}(5)}, & u_{1}(5)=-\overline{u_{0}(4)}, & u_{1}(6)=\overline{u_{0}(7)},
\end{array} u_{1}(7)=-\overline{u_{0}(6)} .
$$

The resulting pair u_{0}, u_{1} generates a wavelet basis of the first stage in \mathbb{C}_{N}.
Example 3.4. Suppose that $p=3, n>2, m=2$ and

$$
\left(b_{0}, b_{1}, \ldots, b_{8}\right)=\frac{1}{\sqrt{3}}(1, a, \alpha, 0, b, \beta, 0, c, \gamma)
$$

where $|a|^{2}+|b|^{2}+|c|^{2}=|\alpha|^{2}+|\beta|^{2}+|\gamma|^{2}=1$. Then, using (3.2) and (3.3), we obtain

$$
\begin{aligned}
& u_{0}(0)=\frac{1}{3 \sqrt{3}}(1+a+b+c+\alpha+\beta+\gamma) \\
& u_{0}(1)=\frac{1}{3 \sqrt{3}}\left(1+a+\alpha+(b+\beta) \varepsilon_{3}^{2}+(c+\gamma) \varepsilon_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& u_{0}(2)=\frac{1}{3 \sqrt{3}}\left(1+a+\alpha+(b+\beta) \varepsilon_{3}+(c+\gamma) \varepsilon_{3}^{2}\right), \\
& u_{0}(3)=\frac{1}{3 \sqrt{3}}\left(1+(a+b+c) \varepsilon_{3}^{2}+(\alpha+\beta+\gamma) \varepsilon_{3}\right), \\
& u_{0}(4)=\frac{1}{3 \sqrt{3}}\left(1+c+\beta+(a+\gamma) \varepsilon_{3}^{2}+(b+\alpha) \varepsilon_{3}\right), \\
& u_{0}(5)=\frac{1}{3 \sqrt{3}}\left(1+b+\gamma+(a+\beta) \varepsilon_{3}^{2}+(c+\alpha) \varepsilon_{3}\right), \\
& u_{0}(6)=\frac{1}{3 \sqrt{3}}\left(1+(a+b+c) \varepsilon_{3}+(\alpha+\beta+\gamma) \varepsilon_{3}^{2}\right), \\
& u_{0}(7)=\frac{1}{3 \sqrt{3}}\left(1+b+\gamma+(a+\beta) \varepsilon_{3}+(c+\alpha) \varepsilon_{3}^{2}\right), \\
& u_{0}(8)=\frac{1}{3 \sqrt{3}}\left(1+c+\beta+(a+\gamma) \varepsilon_{3}+(b+\alpha) \varepsilon_{3}^{2}\right),
\end{aligned}
$$

where $\varepsilon_{3}=\exp (2 \pi i / 3)$. We set $u_{0}(j)=u_{1}(j)=u_{2}(j)=0$ for $9 \leq j \leq 3^{n}-1$ and use (3.5) to define the other components of the vectors $u_{1}, u_{2} \in \mathbb{C}_{N}$ so that the matrix

$$
\frac{9}{\sqrt{3}}\left(\begin{array}{ccc}
\widehat{u}_{0}(l) & \widehat{u}_{1}(l) & \widehat{u}_{2}(l) \\
\widehat{u}_{0}(l+3) & \widehat{u}_{1}(l+3) & \widehat{u}_{2}(l+3) \\
\widehat{u}_{0}(l+6) & \widehat{u}_{1}(l+6) & \widehat{u}_{2}(l+6)
\end{array}\right)
$$

is unitary for $l=0,1,2$. The resulting collection of the vectors u_{0}, u_{1}, u_{2} generates a wavelet basis of the first stage in \mathbb{C}_{N}.

The values of the parameters b_{l} in Examples 3.2-3.4 are universal in the sense that they occur not only in the construction of wavelet bases in \mathbb{C}_{N}, but also in the corresponding examples for the spaces $\ell^{2}\left(\mathbb{Z}_{+}\right)$and $L^{2}\left(\mathbb{R}_{+}\right)$. At the same time, the construction of orthogonal wavelets on the Cantor and Vilenkin groups (as well as on the half-line \mathbb{R}_{+}; see [8], [10]) requires some additional constraint related to the requirement that the masks have no blocking sets (so, in Example 2, the pair $a=0, b=1$ leads to a wavelet basis in the space \mathbb{C}_{N}, while, in the original example due to Lang, this pair corresponds to a linearly dependent system; see also Example 2 in [8]). The great freedom of choice of the values of the parameters in the construction of orthogonal wavelets in the space \mathbb{C}_{N} by the method described in this paper becomes apparent due to the fact that, according to step 1 of the procedure, for ($b_{0}, b_{1}, \ldots, b_{p^{m}-1}$) we can choose any complex vector of dimension p^{m} satisfying condition (3.2) (compare with the construction of discrete Daubechies wavelets in [3] and [21]). This property is important for applications, because it extends the range of applications of the well-known adaptive signal-approximation methods (see, for example, Chapters 8-10 in Mallat's book [26]).

Definition 3.2. Suppose that $m \in \mathbb{N}, m \leq n$. By a sequence of orthogonal wavelet filters of the m th stage we mean a sequence of vectors

$$
u_{0}^{(1)}, u_{1}^{(1)}, \ldots, u_{p-1}^{(1)}, \quad \ldots, \quad u_{0}^{(m)}, u_{1}^{(m)}, \ldots, u_{p-1}^{(m)}
$$

such that $u_{\mu}^{(v)} \in \mathbb{C}_{N_{v-1}}$ for $v=1,2, \ldots, m, \mu=0,1, \ldots, p-1$ and the matrices

$$
A^{(v)}(l):=\frac{N}{\sqrt{p}}\left(\begin{array}{ccc}
\widehat{u}_{0}^{(v)}(l) & \ldots & \widehat{u}_{p-1}^{(v)}(l) \\
\widehat{u}_{0}^{(v)}\left(l+N_{v}\right) & \ldots & \widehat{u}_{p-1}^{(v)}\left(l+N_{v}\right) \\
\widehat{u}_{0}^{(v)}\left(l+2 N_{v}\right) & \ldots & \widehat{u}_{p-1}^{(v)}\left(l+2 N_{v}\right) \\
\ldots & \ldots & \ldots \\
\widehat{u}_{0}^{(v)}\left(l+(p-1) N_{v}\right) & \ldots & \widehat{u}_{p-1}^{(v)}\left(l+(p-1) N_{v}\right)
\end{array}\right)
$$

are unitary for $v=1,2, \ldots, m, l=0,1, \ldots, N_{v}-1$.
Theorem 3.2. Suppose that the collection of vectors $u_{0}, u_{1}, \ldots, u_{p-1}$ generates a wavelet basis of the first stage in \mathbb{C}_{N}. For a given $m \in \mathbb{N}, m \leq n$, set

$$
\begin{equation*}
u_{\mu}^{(1)}(j)=u_{\mu}(j), \quad u_{\mu}^{(v)}(j)=\Delta_{v}^{-1} \sum_{k=0}^{\Delta_{v}-1} u_{\mu}^{(1)}\left(j+k N_{v-1}\right), \quad j \in \mathbb{Z}_{N_{v-1}}, \tag{3.7}
\end{equation*}
$$

where $v=2, \ldots, m, \mu=0,1, \ldots, p-1$. Then the vectors

$$
u_{0}^{(1)}, u_{1}^{(1)}, \ldots, u_{p-1}^{(1)}, \quad \ldots, \quad u_{0}^{(m)}, u_{1}^{(m)}, \ldots, u_{p-1}^{(m)}
$$

constitute a sequence of orthogonal wavelet filters of the mth stage.
Thus, from a given vector $u_{0} \in \mathbb{C}_{N}$, defined by (3.2) and (3.3) we can, first, find a wavelet basis of the first stage $u_{0}, u_{1}, \ldots, u_{p-1}$, using (3.4) or (3.5), and then, using (3.6) obtain the sequence of orthogonal wavelet filters of the m th stage. Denote by \oplus the direct sum of the subspaces of the space \mathbb{C}_{N}. By the theorem that follows, from any sequence of orthogonal wavelet filters of the m th stage we can construct an orthonormal wavelet basis in \mathbb{C}_{N}.

Theorem 3.3. Suppose that a sequence of orthogonal wavelet filters of the mth stage is given in the space \mathbb{C}_{N} :

$$
u_{0}^{(1)}, u_{1}^{(1)}, \ldots, u_{p-1}^{(1)}, \quad \ldots, \quad u_{0}^{(m)}, u_{1}^{(m)}, \ldots, u_{p-1}^{(m)}
$$

Let $\varphi^{(1)}=u_{0}^{(1)}, \psi_{\mu}^{(1)}=u_{\mu}^{(1)}, \mu=1, \ldots, p-1$, and define $\varphi^{(v)}, \psi_{\mu}^{(v)}$ for $v=2, \ldots, m$, $\mu=1, \ldots, p-1$ by the formulas

$$
\varphi^{(v)}=\varphi^{(v-1)} * U^{v-1} u_{0}^{(v)}, \quad \psi_{\mu}^{(v)}=\varphi^{(v-1)} * U^{v-1} u_{\mu}^{(v)}
$$

Further, for $v=1, \ldots, m, \mu=1, \ldots, p-1$, we set

$$
\varphi_{-v, k}=T_{p^{v} k} \varphi^{(v)}, \quad \psi_{-v, k}^{(\mu)}=T_{p^{v} k} \psi_{\mu}^{(v)}, \quad k=0,1, \ldots, N_{v}-1,
$$

and define the subspaces

$$
\begin{aligned}
& V_{-v}=\operatorname{span}\left\{\varphi_{-v, k}\right\}_{k=0}^{N_{v}-1}, \quad W_{-v}^{(\mu)}=\operatorname{span}\left\{\psi_{-v, k}^{(\mu)}\right\}_{k=0}^{N_{v}-1}, \\
& W_{-v}=W_{-v}^{(1)} \oplus \cdots \oplus W_{-v}^{(p-1)} .
\end{aligned}
$$

Then the following expansion holds:

$$
\begin{equation*}
\mathbb{C}_{N}=W_{-1} \oplus W_{-2} \oplus \cdots \oplus W_{-m} \oplus V_{-m} \tag{3.8}
\end{equation*}
$$

and, for each $v=1,2, \ldots, m$ the following properties are valid:
(a) $V_{-v}=V_{-v-1} \oplus W_{-v-1}$;
(b) $\left\{\varphi_{-v, k}\right\}_{k=0}^{N_{v}-1}$ is an orthonormal basis in V_{-v};
(c) $\left\{\psi_{-v, k}^{(1)}\right\}_{k=0}^{N_{v}-1} \cup \cdots \cup\left\{\psi_{-v, k}^{(p-1)}\right\}_{k=0}^{N_{v}-1}$ is an orthonormal basis in W_{-v}.

This theorem justifies the method of constructing subspaces V_{-1}, \ldots, V_{-n} in \mathbb{C}_{N} with the following properties:
(i) $V_{-v-1} \subset V_{-v}$ for all $v \in\{1,2, \ldots n\}$;
(ii) for each $v \in\{1,2, \ldots n\}$, there exists a vector $\varphi^{(v)} \in V_{-v}$ such that the system $\left\{T_{p^{v} k} \varphi^{(v)}\right\}_{k=0}^{N_{v}-1}$ is an orthonormal basis in V_{-v};
(iii) for each $1 \leq m \leq n$, relation (3.7) is valid;
(iv) for each $v \in\{1,2, \ldots n\}$ there exist vectors $\psi_{1}^{(v)}, \ldots, \psi_{p-1}^{(v)} \in W_{-v}$ such that the system $\bigcup_{\mu=1}^{p-1}\left\{T_{p^{v} k} \psi_{\mu}^{(v)}\right\}_{k=0}^{N_{v}-1}$ is an orthonormal basis in W_{-v}.

Theorems 3.1-3.3 are proved by the author in [16]. A similar construction in the space $L^{2}\left(\mathbb{R}^{d}\right)$ is well-known and is related to the notion of multiresolution analysis. According to the terminology used in the theory of multiresolution analysis, the sequence $\left\{\varphi^{(v)}\right\}_{v=1}^{n}$ in property (ii) it is natural to call a scaling sequence in \mathbb{C}_{N}.

In particular, for $p=2, n=3$, using Theorem 3.3, we obtain three orthonormal wavelet bases in \mathbb{C}_{8} :

$$
\begin{aligned}
& \left\{\psi_{-1, k}\right\}_{k=0}^{3} \cup\left\{\varphi_{-1, k}\right\}_{k=0}^{3} \quad(m=1), \\
& \left\{\psi_{-1, k}\right\}_{k=0}^{3} \cup\left\{\psi_{-2, k}\right\}_{k=0}^{1} \cup\left\{\varphi_{-2, k}\right\}_{k=0}^{1} \quad(m=2), \\
& \left\{\psi_{-1, k}\right\}_{k=0}^{3} \cup\left\{\psi_{-2, k}\right\}_{k=0}^{1} \cup\left\{\psi_{-3,0}\right\} \cup\left\{\varphi_{-3,0}\right\} \quad(m=3) .
\end{aligned}
$$

In the Haar case (see Example 3.1), these bases consist of the vectors

$$
\begin{array}{ll}
\varphi_{-1,0}=\frac{1}{\sqrt{2}}(1,1,0,0,0,0,0,0), & \psi_{-1,0}=\frac{1}{\sqrt{2}}(1,-1,0,0,0,0,0,0), \\
\varphi_{-1,1}=\frac{1}{\sqrt{2}}(0,0,1,1,0,0,0,0), & \psi_{-1,1}=\frac{1}{\sqrt{2}}(0,0,1,-1,0,0,0,0), \\
\varphi_{-1,2}=\frac{1}{\sqrt{2}}(0,0,0,0,1,1,0,0), & \psi_{-1,2}=\frac{1}{\sqrt{2}}(0,0,0,0,1,-1,0,0),
\end{array}
$$

$$
\begin{aligned}
\varphi_{-1,3} & =\frac{1}{\sqrt{2}}(0,0,0,0,0,0,1,1), & \psi_{-1,3} & =\frac{1}{\sqrt{2}}(0,0,0,0,0,0,1,-1) \\
\varphi_{-2,0} & =\frac{1}{2}(1,1,1,1,0,0,0,0), & \psi_{-2,0} & =\frac{1}{2}(1,1,-1,-1,0,0,0,0), \\
\varphi_{-2,1} & =\frac{1}{2}(0,0,0,0,1,1,1,1), & \psi_{-2,1} & =\frac{1}{2}(0,0,0,0,1,1,-1,-1), \\
\varphi_{-3,0} & =\frac{1}{2 \sqrt{2}}(1,1,1,1,1,1,1,1), & \psi_{-3,0} & =\frac{1}{2 \sqrt{2}}(1,1,1,1,-1,-1,-1,-1) .
\end{aligned}
$$

In the general case, the orthogonal projections $P_{-v}: \mathbb{C}_{N} \rightarrow V_{-v}$ and $Q_{-v}: \mathbb{C}_{N} \rightarrow$ W_{-v} act by the formulas

$$
\begin{equation*}
P_{-v} x=\sum_{k=0}^{N_{v}-1}\left\langle x, \varphi_{-v, k}\right\rangle \varphi_{-v, k}, \quad Q_{-v} x=\sum_{\mu=1}^{p-1} \sum_{k=0}^{N_{v}-1}\left\langle x, \psi_{-v, k}^{(\mu)}\right\rangle \psi_{-v, k}^{(\mu)} . \tag{3.9}
\end{equation*}
$$

Suppose that I is the identity operator on \mathbb{C}_{N}. Setting $P_{0}=I, V_{0}=\mathbb{C}_{N}$ and using Theorem 3.3 for any $x \in \mathbb{C}_{N}$, we obtain the equalities

$$
x=P_{-v} x+\sum_{k=1}^{v} Q_{-k} x, \quad P_{-v+1} x=P_{-v} x+Q_{-v} x, \quad v=1,2, \ldots, n .
$$

An arbitrary vector x from \mathbb{C}_{N} can be regarded as the input signal $a_{0}=x$ and, for $v=1,2, \ldots, m$, we can set

$$
\begin{equation*}
a_{v}=D\left(a_{v-1} * \widetilde{u}_{0}^{(v)}\right), \quad d_{v}^{(\mu)}=D\left(a_{v-1} * \widetilde{u}_{\mu}^{(v)}\right), \quad \mu=1, \ldots, p-1 \tag{3.10}
\end{equation*}
$$

We can easily see that the components of the vectors a_{v} and $d_{v}^{(\mu)}$ are the coefficients of the expansions (3.8) for a chosen x. The application of formulas (3.9) constitutes the phase of the analysis of the signal x and yields the collection of vectors

$$
\begin{equation*}
d_{1}^{(1)}, \ldots, d_{p-1}^{(1)}, \ldots, d_{1}^{(m)}, \ldots, d_{p-1}^{(m)}, a_{m} \tag{3.11}
\end{equation*}
$$

The inverse passage from the collection (3.10) to the original vector x constitutes the reconstruction phase and is defined by the formulas

$$
\begin{equation*}
a_{v-1}=u_{0}^{(v)} * U a_{v}+\sum_{\mu=1}^{p-1} u_{\mu}^{(v)} * U d_{\mu}^{(v)}, \quad v=m, m-1, \ldots, 1 \tag{3.12}
\end{equation*}
$$

Formulas (3.9) and (3.11) specify the direct and inverse discrete wavelet transforms associated with the sequence of wavelet filters $u_{0}^{(1)}, u_{1}^{(1)}, \ldots, u_{p-1}^{(1)}, \ldots$, $u_{0}^{(m)}, u_{1}^{(m)}, \ldots, u_{p-1}^{(m)}$, and are realized by using fast algorithms (cf. [21, Section 3.2], [28, Section 4]).

Remark 3.1. Suppose that $m \in \mathbb{N}, m \leq n$. For a given sequence of vectors

$$
\begin{equation*}
u_{0}^{(1)}, \ldots, u_{p-1}^{(1)}, v_{0}^{(1)}, \ldots, v_{p-1}^{(1)}, \quad \ldots, \quad u_{0}^{(m)}, \ldots, u_{p-1}^{(m)}, v_{0}^{(m)}, \ldots, v_{p-1}^{(m)} \tag{3.13}
\end{equation*}
$$

such that $u_{\mu}^{(v)}, v_{\mu}^{(v)} \in \mathbb{C}_{N_{v-1}}$ for $v=1,2, \ldots, m, \mu=0,1, \ldots, p-1$, we introduce the matrices $A^{(v)}(l)$ just as in Definition 3.2 and set

$$
\bar{B}^{(v)}(l):=\frac{N}{\sqrt{p}}\left(\begin{array}{ccc}
\overline{\widehat{v}_{0}^{(v)}(l)} & \cdots & \overline{\widehat{v}_{p-1}^{(v)}(l)} \\
\frac{\widehat{v}_{0}^{(v)}\left(l+N_{v}\right)}{\widehat{v}_{0}^{(v)}\left(l+2 N_{v}\right)} & \cdots & \frac{\widehat{v}_{p-1}^{(v)}\left(l+N_{v}\right)}{\widehat{v}_{p-1}^{(v)}\left(l+2 N_{v}\right)} \\
\cdots & \cdots & \cdots \\
\frac{\widehat{v}_{0}^{(v)}\left(l+(p-1) N_{v}\right)}{} & \ldots & \overline{\widehat{v}_{p-1}^{(v)}\left(l+(p-1) N_{v}\right)}
\end{array}\right)^{T}
$$

where T denotes transposition. We say that the vectors (3.12) constitute a sequence of biorthogonal wavelet filters of the mth stage if

$$
\bar{B}^{(v)}(l) A^{(v)}(l)=E_{p}, \quad v=1,2, \ldots, m ; l=0,1, \ldots, N_{v}-1
$$

where E_{p} is the identity matrix of order p. Using this definition, we can generalize the construction given above to the biorthogonal case and, instead of Examples 3.2-3.4, obtain the discrete analogs of the corresponding examples from [12] and [14].

Remark 3.2. Suppose that $\left\{w_{k}\right\}_{k=0}^{\infty}$ is the generalized Walsh system determined from the given number $p \geq 2$ and generating an orthonormal basis in the L^{2} space on the interval $\Delta=[0,1)$ (the case $p=2$ corresponds to the classical Walsh system; see, for example, [1]). To each sequence $x=\left(x_{0}, x_{1}, \ldots\right)$ from $\ell^{2}\left(\mathbb{Z}_{+}\right)$ we assign the function $\widehat{x}:=\sum_{k=0}^{\infty} x_{k} w_{k}$ in $L^{2}(\Delta)$. Using this mapping instead of the Vilenkin-Chrestenson transform, we can prove analogs of Theorems 3.1-3.3 for the space $\ell^{2}\left(\mathbb{Z}_{+}\right)$(compare [21, Chapter 4]) and obtain the discrete nonperiodic analogs of the wavelet bases from [8] and [14].

Further discussions and possible applications of periodic wavelets considered in this paper can be found in the works [13] and [19].

Acknowledgment

I would like to express my gratitude to Prof. M. Skopina for reading and making valuable comments to Section 2 of the paper.

References

[1] S. Albeverio, S. Evdokimov, and M. Skopina, p-adic multiresolution analysis and wavelet frames, J. Fourier Anal. Appl. 16(5) (2010), 693-714.
[2] J.J. Benedetto and R.L. Benedetto, A wavelet theory for local fields and related groups, J. Geom. Anal. 14(3)(2004), 423-456.
[3] S.A. Broughton and K.M. Bryan, Discrete Fourier Analysis and Wavelets. Applications to Signal and Image Processing, John Wiley \& Sons, Hoboken, NJ, 2009.
[4] H.L. Chen and S.L. Peng, Localization of dual periodic scaling and wavelet functions, Adv. Comput. Math. 19(2003), 195-210.
[5] C.K. Chui and H.N. Mhaskar, On trigonometric wavelets, Constr. Approx. 9(1993), 167-190.
[6] R.E. Edwards, Fourier Series. A Modern Introduction, Vol. 2, Springer Verlag, Berlin, 1982.
[7] Yu.A. Farkov, Orthogonal wavelets with compact support on locally compact abelian group, Izvestiya: Mathematics 69(3)(2005), 623-650.
[8] Yu.A. Farkov, Orthogonal wavelets on direct products of cyclic groups, Math. Notes 82(6)(2007), 843-859.
[9] Yu.A. Farkov and E.A. Rodionov, Estimates of the smoothness of dyadic orthogonal wavelets of Daubechies type, Math. Notes 86(3)(2009), 392-406.
[10] Yu.A. Farkov, On wavelets related to the Walsh series, J. Approx. Theory 161(1) (2009), 259-279.
[11] Yu.A. Farkov, Wavelets and frames based on Walsh-Dirichlet type kernels, Communic. Math. Appl. 1(2010), 27-46.
[12] Yu.A. Farkov, A.Yu. Maksimov and S.A. Stroganov, On biorthogonal wavelets related to the Walsh functions, Int. J. Wavelets Multiresolut. Inf. Process. 9(3)(2011), 485-499.
[13] Yu.A. Farkov and S.A. Stroganov, The use of discrete dyadic wavelets in image processing, Russian Math. (Iz. VUZ), 55(7)(2011), 47-55.
[14] Yu.A. Farkov and E.A. Rodionov, Algorithms for wavelet construction on Vilenkin groups, p-Adic Numb. Ultr. Anal. Appl. 3(3)(2011), 181-195.
[15] Yu.A. Farkov, Periodic wavelets on the p-adic Vilenkin group, p-Adic Numb. Ultr. Anal. Appl. 3(4)(2011), 281-287.
[16] Yu.A. Farkov, Discrete wavelets and the Vilenkin-Chrestenson transform, Math. Notes 89(6)(2011), 871-884.
[17] Yu.A. Farkov, U. Goginava and T. Kopaliani, Unconditional convergence of wavelet expansion on the Cantor dyadic group, Jaen J. Approx. 3(1)(2011), 117-133.
[18] Yu.A. Farkov, Wavelets and frames in Walsh Analysis, in Wavelets: Classification, Theory and Applications, Chapter 11, edited by Manel del Valle et al, Nova Science Publishers, New York, 267-304 (2012).
[19] Yu.A. Farkov and M.E. Borisov, Periodic dyadic wavelets and coding of fractal functions, Russian Math. (Iz. VUZ) (2012), in press.
[20] B. Fisher and J. Prestin, Wavelets based on orthogonal polynomials, Math. Computation 66(220)(1997), 1593-1618.
[21] M.W. Frazer, An Introduction to Wavelets Through Linear Algebra, Springer-Verlag, New York, Inc., 1999.
[22] B.I. Golubov, A.V. Efimov and V.A. Skvortsov, Walsh Series and Transforms: Theory and Applications, LKI, Moscow (2008); Klumer, Dordrecht (1991).
[23] S.V. Kozyrev, Wavelet theory as p-adic spectral analysis, Izvestiya: Mathematics 66(2)(2002), 149-158.
[24] W.C. Lang, Orthogonal wavelets on the Cantor dyadic group, SIAM J. Math. Anal. 27(1)(1996), 305-312.
[25] S.F. Lukomskii, Multiresolution analysis on zero-dimensional abelian groups and wavelets bases, Sbornik: Mathematics, 201(5) (2010), 669-691.
[26] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, New York - London, 1999.
[27] I.E. Maksimenko and M.A. Skopina, Multivariate periodic wavelets, St. Petersburg Math. J. 15(2)(2004), 165-190.
[28] I.Ya. Novikov, V.Yu. Protassov and M.A. Skopina, Wavelet Theory, Translations of Mathematical Monographs 239. Providence, RI: American Mathematical Society (AMS), 2011.
[29] A.P. Petukhov, Periodic discrete wavelets, St. Petersburg Math. J. 8(3)(1996), 481-503.
[30] A.P. Petukhov, Periodic wavelets, Sbornik: Mathematics 188(10)(1997), 1481-1506.
[31] V.Yu. Protasov and Yu.A. Farkov, Dyadic wavelets and refinable functions on a half-line, Sbornik: Mathematics 197(10)(2006), 1529-1558.
[32] V.Yu. Protasov, Approximation by dyadic wavelets, Sbornik: Mathematics 198(11)(2007), 1665-1681
[33] F. Schipp, W.R. Wade and P. Simon, Walsh Series: An Introduction to Dyadic Harmonic Analysis, Adam Hilger, New York, 1990.
[34] Bl. Sendov, Multiresolution analysis of functions defined on the dyadic topological group, East J. Approx. 3(2)(1997), 225-239.
[35] Bl. Sendov, Walsh-similar functions, East J. Approx. 5(1)(1999), 1-65.
[36] Bl. Sendov, Adapted multiresolution analysis and wavelets, in: Proceedings of Alexits Memorial Conference "Functions, Series, Operators" (August 9-14, 1999), L. Leindler, F. Schipp and J. Szabados (editors), Budapest (2002), 23-38.
[37] F.A. Shah, Construction of wavelet packets on the p-adic field, Int. J. Wavelets Multiresolut. Inf. Process. 7(5) (2009), 553-565.
[38] F.A. Shah and L. Debnath, Dyadic wavelet frames on a half-line using the Walsh-Fourier transform, Integ. Transf. Spec. Funct. 22(7) (2011), 477-486.
[39] V.M. Shelkovich and M. Skopina, p-adic Haar multiresolution analysis and pseudodifferential operators, J. Fourier Anal. Appl. 15 (3) (2009), 366-393.
[40] M.A. Skopina, Multiresolution analysis of periodic functions, East J. Approx. 3(2)(1997), 203-224.
[41] M.A. Skopina, Orthogonal polynomial Schauder bases in $C[-1,1]$ with optimal growth of degrees, Sbornik: Mathematics 192(3)(2001), 433-454.

Yu. A. Farkov, Russian State Geological Prospecting University, 23, Ulitsa Miklukho Maklaya, Moscow 117997, Russia.
E-mail: farkov@list.ru

[^0]: 2010 Mathematics Subject Classification. 42C10, 42C40, 65T60.
 Key words and phrases. Walsh functions; Periodic wavelets; Cantor dyadic group, p-adic Vilenkin group.

