

Nonstationary Wavelets Related to the Walsh Functions

Yuri A. Farkov, Evgeny A. Rodionov

Department of Mathematics, Russian State Geological Prospecting University, Moscow, Russia Email: farkov@list.ru

Received March 29, 2012; revised April 25, 2012; accepted May 2, 2012

ABSTRACT

Using the Walsh-Fourier transform, we give a construction of compactly supported nonstationary dyadic wavelets on the positive half-line. The masks of these wavelets are the Walsh polynomials defined by finite sets of parameters. Application to compression of fractal functions are also discussed.

Keywords: Walsh Functions; Nonstationary Dyadic Wavelets; Fractal Functions; Adapted Multiresolution Analysis

1. Introduction

As usual, let $\mathbb{R}_{+} = [0, +\infty)$ be the positive half-line, $\mathbb{Z}_{+} = \{0,1,2,\cdots\}$ be the set of all nonnegative integers, and let $\mathbb{N} = \{1, 2, \dots\}$ be the set of all positive integers. The first examples of orthogonal wavelets on \mathbb{R}_+ related to the Walsh functions and the corresponding wavelets on the Cantor dyadic group have been constructed in [1]; then, in [2] and [3], a multifractal structure of this wavelets is observed and conditions for wavelets to generate an unconditional basis in L^q -spaces for all $1 < q < \infty$ have been found. These investigations are continued in [4-10] where among other subjects the algorithms to construct orthogonal and biorthogonal wavelets associated with the generalized Walsh functions are studied. In the present paper, using the Walsh-Fourier transform, we construct nonstationary dyadic wavelets on \mathbb{R} , (cf. [11-13], [14, Ch.8]).

Let us denote by [x] the integer part of x. For every $x \in \mathbb{R}_+$, we set

$$x_{j} = [2^{j}x] \pmod{2}, x_{-j} = [2^{1-j}x] \pmod{2}, j \in \mathbb{N},$$

where $x_j, x_{-j} \in \{0,1\}$. Then

$$x = \sum_{j < 0} x_j 2^{-j-1} + \sum_{j > 0} x_j 2^{-j} .$$

The dyadic addition on \mathbb{R}_+ is defined as follows

$$x \oplus y = \sum_{j < 0} |x_j - y_j| 2^{-j-1} + \sum_{j < 0} |x_j - y_j| 2^{-j}$$
.

Further, we introduce the notations

$$\chi(x,\omega) = (-1)^{\sigma(x,\omega)}, \sigma(x,\omega) = \sum_{j=1}^{\infty} x_j \omega_{-j} + x_{-j} \omega_j,$$

where $x, \omega \in \mathbb{R}_+$. Then the Walsh function w_k of order k is $w_k(x) = \chi(x,k)$ (see, e.g., [15]).

The Walsh-Fourier transform of every function f that belongs to $L^1(\mathbb{R}_+) \cap L^2(\mathbb{R}_+)$ is defined by

$$\hat{f}(\omega) = \int_0^\infty f(x) \chi(x,\omega) dx, \quad \omega \in \mathbb{R}_+.$$

and extent to the whole space $L^2(\mathbb{R}_+)$ in a standard way. The intervals

$$\Delta_k^{(n)} = \lceil k 2^{-n}, (k+1) 2^{-n} \rceil, \quad k \in \mathbb{Z}_+$$

are called the *dyadic intervals of range n*. The dyadic topology on \mathbb{R}_+ is generated by the collection of dyadic intervals. A subset E of \mathbb{R}_+ which is compact in the dyadic topology will be called *W-compact*.

For any $j \in \mathbb{Z}_+$ we define φ_j and ψ_j by the following algorithm:

Step 1. For each $j \in \mathbb{N}$ choose $n_j \in \mathbb{N}$, and $b_k^{(j)} \in \mathbb{C}$, $k = 0, 1 \cdots, 2^{n_j} - 1$, such that

$$b_0^{(j)} = 1, \left| b_k^{(j)} \right|^2 + \left| b_{k+2^{n_j-1}}^{(j)} \right|^2 = 1$$
 (1)

for all $k = 0, 1, \dots, 2^{n_j - 1} - 1$.

Step 2. Define the masks

$$m_0^{(j)}(\omega) = \frac{1}{2} \sum_{k=0}^{2^{n_j} - 1} c_k^{(j)} w_k(\omega)$$
 (2)

with the coefficients

$$c_k^{(j)} = \frac{1}{2^{n_j-1}} \sum_{l=0}^{2^{n_j}-1} b_l^{(j)} w_l \left(2^{-n_j} k\right), \ k = 0, 1, \dots, 2^{n_j} - 1,$$

so that $m_0^{(j)}(\omega) = b_l^{(j)}$ for all $\omega \in \Delta_l^{(j)}$ (cf. [15, Sect. 9.7]).

Step 3. For each $j \in \mathbb{Z}_+$ put

$$\hat{\varphi}_{j}(\omega) = 2^{-j/2} \prod_{l=j+1}^{\infty} m_{0}^{(l)} (2^{-l}\omega),$$
 (3)

Copyright © 2012 SciRes.

so that

$$\varphi_{j}(x) = \frac{1}{\sqrt{2}} \sum_{k=0}^{2^{n_{j}+1}-1} c_{k}^{(j+1)} \varphi_{j+1}(x \oplus 2^{-j-1}k). \tag{4}$$

Step 4. Define ψ_i by the formula

$$\psi_{j}(x) = \frac{1}{\sqrt{2}} \sum_{k=0}^{2^{n_{j}+1}-1} (-1)^{k+1} c_{k\oplus 1}^{(j+1)} \varphi_{j+1}\left(x \oplus \frac{k}{2^{j+1}}\right). \tag{5}$$

Further, let us define subspaces $\{V_i\}$ and $\{W_i\}$ $L^2(\mathbb{R}_+)$ as follows

$$V_{j} = \overline{\operatorname{span}\left\{\varphi_{j,k} : k \in \mathbb{Z}_{+}\right\}},\,$$

$$W_{j} = \overline{\operatorname{span}\left\{\psi_{j,k} : k \in \mathbb{Z}_{+}\right\}}$$

We say that a polynomial m satisfies the modified Cohen condition if there exists a W-compact subset E of \mathbb{R}_+ such that

int
$$E \ni 0, \mu(E) = 1, E \equiv [0,1) \pmod{\mathbb{Z}_+}$$

and

$$\inf_{i \in \mathbb{N}} \inf_{\omega \in E} \left| m \left(2^{-j} \omega \right) \right| > 0. \tag{6}$$

Theorem. Suppose that the masks $m_0^{(n)}$ satisfy the modified Cohen condition with a subset E and there exists $j_0 \in \mathbb{N}$ such that

$$m_0^{(n)}(\omega) = 1$$
 for all $\omega \in [0, 2^{-j_0})$, $n \in \mathbb{N}$. (7)

Then for any $j \in \mathbb{Z}_+$ the following properties hold:

- a) $\varphi_i, \psi_i \in L^2(\mathbb{R}_+)$ and supp $\varphi_i \subset [0,1]$;
- b) $\left\{ \varphi_{j,k} : k \in \mathbb{Z}_+ \right\}$ and $\left\{ \psi_{j,k} : k \in \mathbb{Z}_+ \right\}$ are orthonormal basis in V_j and W_j , respectively; c) $V_j \subset V_{j+1}$, $V_j \oplus W_j = V_{j+1}$.

c)
$$V_i \subset V_{i+1}$$
, $V_i \oplus W_i = V_{i+1}$

Moreover, we have

$$\overline{\bigcup_{j=0}^{\infty}V_{j}}=L^{2}\left(\mathbb{R}_{+}\right).$$

Corollary. The system

$$\{\varphi_0(\cdot \oplus k): k \in \mathbb{Z}_+\} \cup \{\psi_{j,k}: j, k \in \mathbb{Z}_+\}$$

is an orthonormal basis in $L^2(\mathbb{R}_+)$.

We prove this theorem in the next section. Then using the notion of an adapted multiresolution analysis suggested by Sendov [12], we discuss an application of the nonstationary dyadic wavelets to compression of the Weierstrass function and the Swartz function.

2. Proof of the Theorem

At first we prove the orthonormality of $\left\{ arphi_{j,k}
ight\}_{k \in \mathbb{Z}}$. In view of

$$\langle \varphi_{j,0}, \varphi_{j,n} \rangle = \langle \hat{\varphi}_{j,0}, \hat{\varphi}_{j,n} \rangle = \int_{0}^{\infty} |\hat{\varphi}_{j}(\omega)|^{2} w_{n} (2^{-j}\omega) d\omega,$$

let us show that

$$\int_{0}^{\infty} \left| \varphi_{j}(\omega) \right|^{2} w_{n}(2^{-j}\omega) d\omega = \delta_{0,n}, \quad n \in \mathbb{Z}_{+}.$$

Denote by $\mathbf{1}_E$ the characteristic function of E. For each j we define

$$\hat{\varphi}_{j}^{(s)}(\omega) = 2^{-j/2} \prod_{l=j+1}^{s} m_{0}^{(l)} \left(2^{-l} \, \omega \right) \mathbf{1}_{E} \left(2^{-s} \, \omega \right)$$

for $s = j + 1, j + 2, \dots$ Since $0 \in \text{int } E$ and, for all $j \in \mathbb{Z}_+$ $m_0^{(j)}(\omega) = 1$ in some neighbourhood of zero, we obtain from Equation (3)

$$\lim_{k \to \infty} \hat{\varphi}_j^{(k)}(\omega) = \hat{\varphi}_j(\omega) \quad \text{for all} \quad \omega \in \mathbb{R}_+.$$
 (8)

Let

$$I_j^{(k)}[n] := \int_0^\infty \left| \hat{\varphi}_j^{(k)}(\omega) \right|^2 w_n \left(2^{-j} \omega \right) d\omega$$

where k > j, $n \in \mathbb{Z}_+$. Letting $\zeta = 2^{-s}\omega$, we have

$$\begin{split} I_{j}^{(s)}\left[k\right] &= 2^{s-j} \int_{E} \prod_{l=j+1}^{s} \left| m_{0}^{(l)} \left(2^{s-l} \zeta\right) \right|^{2} w_{k} \left(2^{s-j} \zeta\right) \mathrm{d}\zeta \\ &= 2^{s-j} \int_{0}^{1} \left| m_{0}^{(k)} \left(\zeta\right) \right|^{2} \prod_{l=j+1}^{s-1} \left| m_{0}^{(l)} \left(2^{s-l} \zeta\right) \right|^{2} w_{k} \left(2^{s-j}\right) \mathrm{d}\zeta \\ &= 2^{s-j} \int_{0}^{1/2} \left(\left| m_{0}^{(k)} \left(\zeta\right) \right|^{2} + \left| m_{0}^{(k)} \left(\zeta + 1/2\right) \right|^{2} \right) \\ &\times \prod_{l=j+1}^{s-1} \left| m_{0}^{(l)} \left(2^{s-l} \zeta\right) \right|^{2} w_{k} \left(2^{s-j} \zeta\right) \mathrm{d}\zeta, \end{split}$$

that yields $I_i^{(s)}[k] = I_i^{(s-1)}[k]$. By induction, we obtain

$$I_{j}^{(s)}[k] = I_{j}^{(s-1)}[k] = \dots = I_{j}^{(j+1)}[k] = \delta_{0,k}.$$

According to Equation (8), by Fatou's lemma, we have

$$\int_{0}^{\infty} \left| \hat{\varphi}_{j} \left(\omega \right) \right|^{2} d\omega \leq \lim_{s \to \infty} \int_{0}^{\infty} \left| \hat{\varphi}_{j}^{(s)} \left(\omega \right) \right|^{2} d\omega = \lim_{s \to \infty} I_{j}^{(s)} \left[0 \right] = 1. (9)$$

Consequently, $\varphi_j \in L^2(\mathbb{R}_+)$ and, in view of Equation (5), $\psi_j \in L^2(\mathbb{R}_+)$. It is known that if $\hat{f} \in L^1(\mathbb{R}_+)$ is constant on dyadic intervals of range n, then $\mathrm{supp}\, f \subset \left[0,2^n\right]$ (see [16, Sect. 6.2]). Therefore, each function $\hat{\varphi}_i$ is constant on [k, k+1), $k \in \mathbb{Z}_+$, which implies supp $\varphi_i \subset [0,1]$.

In view of Equation (7), there exists $j_0 \in \mathbb{N}$ such

$$m_0^{(j)}(2^{-j}\omega)=1$$
 for all $j>j_0$, $\omega\in E$.

Hence, for $\omega \in E$,

$$\hat{\varphi}_{j}(\omega) = 2^{-j/2} \prod_{l=i+1}^{j_0} m_0^{(l)} (2^{-l}\omega).$$

It follows from Equation (6) that for some $c_1 > 0$

Copyright © 2012 SciRes.

$$\left| m_0^{(j)} \left(2^{-j} \omega \right) \right| \ge c_1 \text{ for } j \in \mathbb{N}, \ \omega \in E.$$

Since

$$c_1^{j-j_0} \left| \hat{\varphi}_j(\omega) \right| \ge 2^{-j/2} \mathbf{1}_E(\omega), \quad \omega \in \mathbb{R}_+.$$

We have

$$\left|\hat{\varphi}_{j}^{(s)}\left(\omega\right)\right| \leq c_{1}^{j-j_{0}} \prod_{l=j+1}^{s} \left|m_{0}^{(l)}\left(2^{-l}\omega\right)\right| \left|\hat{\varphi}_{j}\left(2^{-s}\omega\right)\right|.$$

or, taking into account Equation (3),

$$\left|\hat{\varphi}_{j}^{(s)}\left(\omega\right)\right| \leq c_{1}^{j-j_{0}}\left|\hat{\varphi}_{j}\left(\omega\right)\right|, \quad \omega \in \mathbb{R}_{+}$$

for s > j, $j \in \mathbb{Z}_+$.

Applying the dominated convergence theorem we obtain

$$\int_{0}^{\infty} \left| \hat{\varphi}_{j} \left(\omega \right) \right|^{2} w_{k} \left(2^{-j} \omega \right) d\omega$$

$$= \lim_{s \to \infty} \int_{0}^{\infty} \left| \hat{\varphi}_{j}^{(s)} \left(\omega \right) \right|^{2} w_{k} \left(2^{-j} \omega \right) d\omega$$

$$= \delta_{0,k},$$

which means that $\left\{ \varphi_{j,k} \right\}_{k \in \mathbb{Z}_+}$ is an orthonormal system.

Now, let us prove an orthonormality of $\left\{\psi_{j,k}\right\}_{k\in\mathbb{Z}_+}$.

For any $k \in \mathbb{Z}_+$ denote $d_k^{(j)} = (-1)^{k+1} c_{k\oplus 1}^{(j)}$. Then

$$_{j,k}(x) = \frac{1}{\sqrt{2}} \sum_{l \in \mathbb{Z}_+} d_{l \oplus 2k}^{(j+1)} \varphi_{j+1,l}(x)$$
 (10)

Since

$$\psi \sum_{l \in \mathbb{Z}_+} \mathbf{d}_l^{(j)} \mathbf{d}_{l \oplus 2k}^{(j)} = 2\delta_{0,k} ,$$

We have

$$\left\langle \psi_{j,k}, \psi_{j,k'} \right\rangle = \frac{1}{2} \sum_{l,s \in \mathbb{Z}_+} \mathbf{d}_{l \oplus 2k}^{(j+1)} \mathbf{d}_{s \oplus 2k'}^{(j+1)} \left\langle \varphi_{j+1,l}, \varphi_{j+1,s} \right\rangle$$

$$= \delta_{k,k'}.$$

Then from Equation (10)

$$V_j \subset V_{j+1}, \ W_j \subset V_{j+1}.$$
 (11)

Let us define

$$m_1^{(j)}(\omega) := \frac{1}{2} \sum_{k=0}^{2^{n_j}-1} \mathbf{d}_k^{(j)} w_k(\omega).$$

Denote $\omega' = 2^{-j-1}\omega$. Under the unitarity of the matrices

$$\begin{pmatrix} m_0^{(j)}(\omega') & m_0^{(j)}(\omega'+1/2) \\ m_1^{(j)}(\omega') & m_1^{(j)}(\omega'+1/2) \end{pmatrix},$$

We can write

$$\begin{split} \hat{\varphi}_{j+1}(\omega) &= \hat{\varphi}_{j+1}(\omega) \\ &\times \left\{ \left[\left| m_0^{(j+1)}(\omega') \right|^2 + \left| m_1^{(j+1)}(\omega') \right|^2 \right] \right. \\ &+ \left[m_0^{(j+1)}(\omega') \overline{m_0^{(j+1)}(\omega' + 1/2)} \right. \\ &+ \left. m_1^{(j+1)}(\omega') \overline{m_1^{(j+1)}(\omega' + 1/2)} \right] \right\} \\ &= \left[\overline{m_0^{(j+1)}(\omega')} + \overline{m_0^{(j+1)}(\omega' + 1/2)} \right] \\ &\times m_0^{(j+1)}(\omega') \hat{\varphi}_{j+1}(\omega) \\ &+ \left[\overline{m_1^{(j+1)}(\omega')} + \overline{m_1^{(j+1)}(\omega' + 1/2)} \right] \\ &\times m_1^{(j+1)}(\omega') \hat{\varphi}_{j+1}(\omega) \\ &= \sqrt{2} \sum_{l \in \mathbb{Z}_+} \overline{c_{2l}^{(j+1)}} w_{2l} \left(2^{-j-1} \omega \right) \hat{\varphi}_j(\omega) \\ &+ \sqrt{2} \sum_{l \in \mathbb{Z}} \overline{d_{2l}^{(j+1)}} w_{2l} \left(2^{-j-1} \omega \right) \hat{\varphi}_j(\omega). \end{split}$$

Using the inverse Fourier-Walsh transform, we have

$$\varphi_{j+1}\left(x\right) = \sqrt{2} \sum_{l \in \mathbb{Z}_{+}} \left(\overline{c}_{2l}^{(j+1)} \varphi_{j,l}\left(x\right) + \overline{\mathbf{d}}_{2l}^{(j+1)} \psi_{j,l}\left(x\right)\right)$$

or.

$$\varphi_{j+1,k}\left(x\right) = \sqrt{2} \sum_{l \in \mathbb{Z}_{+}} \left(\overline{c}_{k \oplus 2l}^{(j+1)} \varphi_{j,l}\left(x\right) + \overline{d}_{k \oplus 2l}^{(j+1)} \psi_{j,l}\left(x\right) \right).$$

With Equation (11) it yields $V_j \oplus W_j = V_{j+1}$ To conclude the proof it remains to show that

$$\overline{\bigcup_{i=0}^{\infty} V_i} = L_2(\mathbb{R}_+). \tag{12}$$

Note, that by Equation (7) for any $\omega \in \mathbb{R}_+$ there exist $j \in \mathbb{Z}_+$ such that $\hat{\varphi}_i(\omega) = 2^{-j/2}$ and, consequently,

$$\bigcup_{i=0}^{\infty} \operatorname{supp} \hat{\varphi}_i = \mathbb{R}_+ \,. \tag{13}$$

For any $x \in \mathbb{R}_+$ the subspace $\bigcup_{j=0}^{\infty} V_j$ is invariant with respect to the shift $f(\cdot) \mapsto f(\cdot \oplus x)$. Actually, an arbitrary $x \in \mathbb{R}_+$ can be approximated by fractions $2^{-j}l$, with arbitrary large j. Besides, each V_j is invariant with respect to the shifts $2^{-j}l$. By Equation (4) it is clear that $V_j \subset V_{j+1}$.

Let $f \in \bigcup_{j=0}^{\infty} V_j$. There exist j_1 such that $f \in V_{j_1}$ and hence $f\left(\cdot \oplus 2^{-j}l\right) \in V_j$ for all $j \geq j_1$. The continuity of $\|f\left(\cdot \oplus x\right)\|$ implies that $f\left(\cdot \oplus x\right) \in \overline{\bigcup_{j=0}^{\infty} V_j}$. If $g \in \overline{\bigcup_{j=0}^{\infty} V_j}$, then approximating g with f from $\bigcup_{j=0}^{\infty} V_j$ and using the invariance of a norm with respect to the shift, we obtain $g\left(\cdot \oplus x\right) \in \overline{\bigcup_{j=0}^{\infty} V_j}$.

Denote by $\left(\overline{\bigcup_{j=0}^{\infty}V_{j}}\right)^{\hat{}}$ the set of all \hat{f} such that $f\in\overline{\bigcup_{j=0}^{\infty}V_{j}}$. By the Weiner's theorem we can write $\left(\overline{\bigcup_{j=0}^{\infty}V_{j}}\right)^{\hat{}}=L_{2}\left(\Omega\right)$, for some measurable $\Omega\subset\mathbb{R}_{+}$. It

is clearly that $\bigcup_{j=0}^{\infty} \operatorname{supp} \hat{\varphi}_j \subset \Omega$ and, in view of Equation (13), we have $\Omega = \mathbb{R}_+$. Hence, the Equation (12) holds. The theorem is proved.

3. Numerical Experiments

For any $N \in \mathbb{N}$, let $\Delta_j(N) := \left[0, (2N-1)2^{-j}\right], \quad j \in \mathbb{Z}_+$. According to [12] an adapted multiresolution analysis (AMRA) of rank N in $L^2(\mathbb{R})$ is a collection of closed subspaces $V_j \subset L^2(\mathbb{R}), \quad j \in \mathbb{Z}_+$, which satisfies the following conditions:

- 1) $V_j \subset V_{j+1}$ for all $j \in \mathbb{Z}_+$;
- 2) $\overline{\bigcup_{i=0}^{\infty}V_{i}}=L^{2}(\mathbb{R});$
- 3) For every $j \in \mathbb{Z}_+$ there is a function φ_j in $L^2(\mathbb{R})$ with a finite support $\Delta_j(N)$ such that $\{\varphi_j(\cdot -k2^{-j}): k \in \mathbb{Z}\}$ is an orthonormal basis of V_j ;
 - 4) For every $j \in \mathbb{Z}_+$ there exists a filter

$$\mathbf{c}(j) = \left\{c_k(j)\right\}_{k=0}^{2N-1}$$

such that

$$\varphi_{j-1}(x) = \sum_{k=0}^{2N-1} c_k(j) \varphi_j(x-k2^{-j}), \quad j \in \mathbb{N}.$$
 (14)

The sequence $\{\varphi_j\}$ from condition (4) is called a scaling sequence for given an AMRA. The corresponding a wavelet sequence $\{\psi_j\}$ can be defined by

$$\psi_{j-1}(x) = \sum_{k=0}^{2N-1} (-1)^k c_{2N-k-1}(j) \varphi_j(x-k2^{-j}).$$
 (15)

Denote by W_j the orthogonal complement of V_{j-1} in V_j . It is known that, under some conditions, the system $\left\{\psi_j\left(\cdot-k2^{-j}\right):k\in\mathbb{Z}\right\}$ is an orthonormal basis of W_j (for more details, see, e.g., [14, Sect. 8.1]). Moreover, if f_A denotes the projection of a function $f\in L^2\left(\mathbb{R}\right)$ on the subset $A\subset L^2\left(\mathbb{R}\right)$, then

$$||f||^2 = ||f_{V_0}||^2 + \sum_{i=0}^{\infty} ||f_{W_i}||^2$$

and

$$\left\| f_{V_{i}} \right\|^{2} = \left\| f_{V_{i-1}} \right\|^{2} + \left\| f_{W_{i-1}} \right\|^{2}.$$
 (16)

Let us denote

$$h_k(j) = c_k(j) / \sqrt{2}$$

and

$$g_{k}(j) = (-1)^{k} h_{1-k}(j).$$

For a given array

$$\mathbf{A}(j) = \left\{ a_{j,0}, a_{j,1}, \cdots, a_{j,2^{j}-1} \right\},\,$$

the direct non-stationary discrete wavelet transform

$$a_{j-1,k} = \sum_{l \in \mathbb{Z}} h_{l-2k}(j) a_{j,l}, d_{j-1,k} = \sum_{l \in \mathbb{Z}} g_{l-2k}(j) a_{j,l},$$

maps it into

$$\mathbf{A}(j-1) = \left\{ a_{j-1,0}, a_{j-1,1}, \dots, a_{j-1,2^{j-1}-1} \right\}$$

and

$$\mathbf{D}(j-1) = \left\{ a_{j-1,0}, a_{j-1,1}, \dots, a_{j-1,2^{j-1}-1} \right\}.$$

The inverse transform is defined as follows

$$a_{j,l} = \sum_{k \in \mathbb{Z}} h_{l-2k}(j) a_{j-1,l} + g_{l-2k}(j) d_{j-1,l}$$

and reconstructs $\mathbf{A}(j)$ by $\mathbf{A}(j-1)$ and $\mathbf{D}(j-1)$. According to [12] in order to choose the filter $\mathbf{c}(j)$ to maximize $\left\|f_{V_{j-1}}\right\|^2$ in Equation (16), we must solve the following problem.

Problem 1. Let $U_N^{(1)}$ be the subset of the 2*N*-dimensional Euclidean space \mathbb{R}^{2N} , which consists of the points $u = (u_0, u_1, \dots, u_{2N-1})$ satisfying the conditions

$$\sum_{k=0}^{2N-1} u_k^2 = 1, \sum_{k=0}^{2N-l-1} u_k u_{2l+k} = 0.$$
 (17)

for $l = 0, 1 \dots, N-1$. Find a point u^* for which

$$\sum_{m,k=0}^{2N-1} u_m^* u_k^* F_{m,k} = \sup_{u \in U_k^{(1)}} \left\{ \sum_{m,k=0}^{2N-1} u_m u_k F_{m,k} \right\}, \tag{18}$$

where $||F_{m,k}||$ is a $2N \times 2N$ symmetric matrix.

Problem 1 has a solution since U_N is a compact. But, as noted in [12], the numerical solution of this problem is not trivial even for N=2.

Concerning the standard Haar and Daubechies (with 4 coefficients) discrete transforms see, e.g., [17]; we will denote them as SWTH and SWTD, respectively. We write NSWTH for the simplest case of a multiresolution analysis of rank 1 which is considered in [12, Sect. 3] (see also [13]). The nonstationary Daubechies discrete wavelet transform which corresponds an AMRA of rank N are defined in [12] and we will use the symbol NSWTDN to denote this transform (see NSWTD1 and NSWTD2 in the tables below).

Method A associated with one of the mentioned above discrete wavelet transforms (cf. [17, Chap.7]) consists of the following steps:

Step 1. Apply the discrete wavelet transform j times to an input array A(j) and get the sequence

$$A(0), D(0), D(1), \dots, D(j-1)$$
.

- **Step 2.** Allocate a certain percentage of the wavelet coefficients with lagest absolute value (we choose 10%) and nullify the remaining coefficients.
- **Step 3.** Apply the inverse wavelet transform to the modified arrays of the wavelet coefficients.
- **Step 4.** Calculate $\|\mathbf{A}(j) \tilde{\mathbf{A}}(j)\|_2$, where $\mathbf{A}(j)$ is a reconstructed array.

In *Method B* the second step is replaced on the uniform quantization and the forth step is replaced on the calculation of the entropy of a vector, obtained in the third step.

We recall that $\mathbf{y} = \{y_1, \dots, y_m\}$ is a vector uniform quantization for given vector $\mathbf{x} = (x_1, \dots, x_m)$, if

$$y_{j} = \begin{cases} 0, |x_{j}| < \Delta, \\ \Delta \left[\frac{x_{j}}{\Delta}\right] + \operatorname{sign}(x_{j}) \frac{\Delta}{2}, |x_{j}| \ge \Delta, \end{cases}$$

where Δ is the length of the quantization interval.

The value Δ will be calculated by

$$\Delta = \left(\max_{1 \le j \le m} x_j - \min_{1 \le j \le m} x_j \right) / 50$$

The Shannon entropy of \mathbf{x} is defined by the formula

$$H(\mathbf{x}) = -\sum_{j=1}^{m} p_j \log_2(p_j),$$

where p_i is frequency of the value x_i .

Let us consider a similar approach associated with the following problem:

Problem 2. Let $N = 2^{n-1}$. Denote by $U_N^{(2)}$ the set of

all points
$$u = (u_0, u_1, \dots, u_{2N-1}) \in \mathbb{R}^{2N}$$
 such that $(u_t)^2 + (u_{t+1})^2 = 1, l = 0, 1, \dots, N-1.$

For every $u \in U_N^{(2)}$ we define

$$c_k(u) = \frac{1}{N} \sum_{j=0}^{2N-1} u_j w_j (k/(2N))$$

for $k = 0, 1, \dots, 2N - 1$. Find a point u^* for which

$$\sum_{m,k=0}^{2N-1} c_m(u^*) c_k(u^*) F_{m,k}$$

$$= \sup_{u \in U_N^{(2)}} \left\{ \sum_{m,k=0}^{2N-1} c_m(u) c_k(u) F_{m,k} \right\},$$
(19)

where $||F_{m,k}||$ is a $2N \times 2N$ symmetric matrix.

Given an array $\mathbf{A}(j) = \left\{a_{j,0}, a_{j,1}, \cdots, a_{j,2^{j}-1}\right\}$, we define the matrix $\|F_{m,k}\|$ in Problem 1 and Problem 2 by

$$F_{m,k} = \sum_{s \in \mathbb{Z}} a_{j,2s+m} a_{j,2s+m}$$

and

$$F_{m,k} = \sum_{s \in \mathbb{Z}_+} a_{j,2s \oplus m} a_{j,2s \oplus m} ,$$

respectively. Here $a_{j,s} = 0$ for $s \notin \{0,1,\cdots,2^j-1\}$. Suppose that u^* is a solution of Equation (19). Then the direct and inverse nonstationary discrete dyadic wavelet transforms are defined by

$$a_{j-1,k} = \sum_{l \in \mathbb{Z}_{+}} h_{l \oplus 2k}^{(j)} a_{j,l}, \quad d_{j-1,k} = \sum_{l \in \mathbb{Z}_{+}} g_{l \oplus 2k}^{(j)} a_{j,l},$$

$$a_{j,l} = \sum_{k \in \mathbb{Z}} h_{l \oplus 2k}^{(j)} a_{j-1,l} + g_{l \oplus 2k}^{(j)} d_{j-1,l} ,$$

where $h_k^{(j)} = c_k \left(u^*\right) / \sqrt{2}$ and $g_k^{(j)} = \left(-1\right)^k h_{1 \oplus k}^{(j)}$. We

AJCM

Table 1. Values of the square error corresponding to Method A.

	SWTH	NSWTH	NSWTL1	SWTD	NSWTD1	NSWTD2	NSWTL2
S	0.166547	0.123983	0.123980	0.248311	0.167071	0.128120	0.122886
$\mathcal{W}_{\scriptscriptstyle{0.9,3}}$	15.823238	14.802541	14.802635	14.290849	14.807025	14.275246	14.022471
$\mathcal{W}_{\scriptscriptstyle{0.9,5}}$	16.813738	15.932313	15.932307	15.378600	15.171461	14.782221	15.130797
$\mathcal{W}_{_{0.9,7}}$	15.887306	13.631379	13.631383	15.595433	16.649683	12.724437	12.674001

Table 2. Values of the entropy obtained by Method B.

	SWTH	NSWTH	NSWTL1	SWTD	NSWTD1	NSWTD2	NSWTL2
S	0.320865	0.327626	0.310639	0.863949	0.299818	0.304681	0.241210
$\mathcal{W}_{_{0.9,3}}$	4.486757	3.810555	3.772764	4.152313	3.822598	3.525294	3.466450
$\mathcal{W}_{_{0.9,5}}$	4.688737	3.874187	3.848227	4.224801	4.106692	3.766994	3.700762
$\mathcal{W}_{\scriptscriptstyle{0.9,7}}$	4.392570	3.371864	3.344916	4.001358	4.435942	3.232151	3.197167

denote these discrete transforms as NSWTL1 if N = 1 and as NSWTL2 if N = 2.

Let us recall that the Weierstrass function is defined as

$$W_{\alpha,\beta}(x) = \sum_{n=1}^{\infty} \alpha^n \cos(\beta^n \pi x), \ 0 < \alpha < 1, \ \beta \ge \frac{1}{\alpha},$$

and the Swartz function is defined as

$$S(x) = \sum_{n=1}^{\infty} \frac{h(2^n x)}{4^n},$$

where $h(x) = [x] - \sqrt{x - [x]}$. We will consider arrays $\mathbf{A}(8)$ with elements $a_{8,k} = \mathcal{W}_{\alpha,\beta}\left(k/128\right)$ or $a_{8,k} = \mathcal{S}\left(k/256\right)$, $k = 0, \cdots, 255$. Then we use the Matlab function fminsearch to solve the optimization problems in Equations (18) and (19). The results of these numerical experiments are presented in **Tables 1** and **2**. We see that in several cases the introduced nonstationary dyadic wavelets have an advantage over the classical Haar and Daubechies wavelets.

REFERENCES

- [1] W. C. Lang, "Orthogonal Wavelets on the Cantor Dyadic Group," SIAM Journal on Mathematical Analysis, Vol. 27, No. 1, 1996, pp. 305-312. doi:10.1137/S0036141093248049
- [2] W. C. Lang, "Wavelet Analysis on the Cantor Dyadic Group," *Houston Journal of Mathematics*, Vol. 24, No. 3, 1998, pp. 533-544.
- [3] W. C. Lang, "Fractal Multiwavelets Related to the Cantor Dyadic Group," *International Journal of Mathematics* and Mathematical Sciences, Vol. 21, No. 2, 1998, pp. 307-317. doi:10.1155/S0161171298000428
- [4] Y. A. Farkov, "Orthogonal Wavelets with Compact Support on Locally Compact Abelian Groups," *Izvestiya: Mathematics*, Vol. 69, No. 3, 2005, pp. 623-650. doi:10.1070/IM2005v069n03ABEH000540
- [5] Y. A. Farkov, "Wavelets and Frames in Walsh Analysis," In: M. del Valle, Ed., Wavelets: Classification, Theory and Applications, Chapter 11, Nova Science Publishers, New York, 2012, pp. 267-304.
- [6] Y. A. Farkov and E. A. Rodionov, "Estimates of the

- Smoothness of Dyadic Orthogonal Wavelets of Daubechies Type," *Mathematical Notes*, Vol. 82, No. 6, 2007, pp. 407-421. doi:10.1134/S0001434609090144
- [7] Y. A. Farkov, A. Yu. Maksimov and S. A. Stroganov, "On Biorthogonal Wavelets Related to the Walsh Functions," *International Journal of Wavelets, Multiresolution* and Information Processing, Vol. 9, No. 3, 2011, pp. 485-499. doi:10.1142/S0219691311004195
- [8] Y. A. Farkov and E. A. Rodionov, "Algorithms for Wavelet Construction on Vilenkin Groups," *P-Adic Numbers*, *Ultrametric Analysis*, and *Applications*, Vol. 3, No. 3, 2011, pp. 181-195. doi:10.1134/S2070046611030022
- [9] Y. A. Farkov, "Periodic Wavelets on the p-Adic Vilenkin Group," P-Adic Numbers, Ultrametric Analysis, and Applications, Vol. 3, No. 4, 2011, pp. 281-287. doi:10.1134/S2070046611040030
- [10] Y. A. Farkov and M. E. Borisov, "Periodic Dyadic Wavelets and Coding of Fractal Functions," Russian Mathematics (Izvestiya VUZ. Matematika), No. 9, 2012, pp. 54-65.
- [11] I. Y. Novikov, "On the Construction of Nonstationary Orthonormal Infinitely Differentiable Compactly Supported Wavelets," *Proceedings of the 12th International Association for Pattern Recognition*, Jerusalem, 9-13 October 1994, pp. 214-215. doi:10.1109/ICPR.1994.577164
- [12] B. Sendov, "Adapted Multiresolution Analysis," Proceedings of Alexits Memorial Conference Functions, Series, Operators, Budapest, 9-14 August 1999, pp. 23-38.
- [13] B. Sendov, "Adaptive Multiresolution Analysis on the Dyadic Topological Group," *Journal of Approximation Theory*, Vol. 96, No. 2, 1998, pp. 21-45. doi:10.1006/jath.1998.3234
- [14] I. Y. Novikov, V. Y. Protasov and M. A. Skopina, "Wavelet Theory," American Mathematical Society, Providence, 2011.
- [15] F. Schipp, W. R. Wade and P. Simon, "Walsh Series: An Introduction to Dyadic Harmonic Analysis," Adam Hilger, Bristol, 1990.
- [16] B. I. Golubov, A. V. Efimov and V. A. Skvortsov, "Walsh Series and Transforms," Kluwer, Dordrecht, 1991.
- [17] S. Welstead, "Fractal and Wavelet Image Compression Techniques," SPIE Optical Engineering Press, Bellingham, 2002.