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ABSTRACT 

Using the Walsh-Fourier transform, we give a construction of compactly supported nonstationary dyadic wavelets on 
the positive half-line. The masks of these wavelets are the Walsh polynomials defined by finite sets of parameters. Ap-
plication to compression of fractal functions are also discussed. 
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1. Introduction The Walsh-Fourier transform of every function f  
that belongs to   1 2L L      is defined by 

As usual, let  be the positive half-line, 
 be the set of all nonnegative integers, 

and let  be the set of all positive integers. 
The first examples of orthogonal wavelets on 

 0,  


 2,
0,1,2, 

1,


q

 re-
lated to the Walsh functions and the corresponding 
wavelets on the Cantor dyadic group have been con-
structed in [1]; then, in [2] and [3], a multifractal struc-
ture of this wavelets is observed and conditions for 
wavelets to generate an unconditional basis in -spaces 
for all  have been found. These investigations 
are continued in [4-10] where among other subjects the 
algorithms to construct orthogonal and biorthogonal 
wavelets associated with the generalized Walsh functions 
are studied. In the present paper, using the Walsh-Fourier 
transform, we construct nonstationary dyadic wavelets on 

 (cf. [11-13], [14, Ch.8]).  

L
1 q 







     
0

ˆ , df f x x x   


,   . 

and extent to the whole space  in a standard 
way. The intervals 

 2L 

    2 , 1 2n n n
k k k    , , k 

are called the dyadic intervals of range . The dyadic 
topology on 

n

  is generated by the collection of dy-
adic intervals. A subset  of   which is compact in 
the dyadic topology will be called W-compact. 

E 

For any j   we define j  and j  by the fol-
lowing algorithm: 

Step 1. For each j choose , and jn   j
kb  , 

0,1 ,2 1jn
k   , such that 



Let us denote by x      
1

22
x the integer part of . For 

every , we set x 
0 2

1, 1n j

j j j
k k

b b b 


   12 mod 2 , 2 mod 2 ,j j
j jx x x x j

        

1

, 

where . Then   , 0,j jx x 
1

0 0

2 2j j
j j

j j

x x x  

 

   . 

The dyadic addition on   is defined as follows 
1

0 0

2 2j j
j j j j

j j

x y x y x y  

 

      . 

Further, we introduce the notations 

       ,

1

, 1 ,,
x

j j j
j

x x x
 

jx    


 


     , 

where ,x  
 kw x 

. Then the Walsh function  of order 
 is  (see, e.g., [15]). 

kw
k  ,x k

             (1) 

for all 
1

0,1, , 2 1.jn
k

   
Step 2. Define the masks 

       
2 1

0
0

1

2

n j

j j
k k

k

m c w 




            (2) 

with the coefficients 

     
2 1

1
0

1
2 , 0,1, , 2

2

n j

j j

j

n nj j
k l ln

l

c b w k k







1    , 

so that      
0

j j
lm b   for all  j

l  (cf. [15, Sect. 
9.7]). 

Step 3. For each j   put 

    /2
0

1

ˆ 2 lj
j

l j

m 2 l  




 

   ,        (3) 
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   2

,0 , ,0 , 0
ˆ ˆ ˆ, , 2 j

j j n j j n j nwso that d      
     , 

    
1

2 1
1 1

1
0

1
2

2

n j

j j
j k j

k
x c x 




  




  k .       (4) let us show that 

   2

0,0
2 dj

j n nw     n
   ,  . 

Step 4. Define j  by the formula 

     
1

2 1
1 1

1 1 1
0

1
1

22

n j
k j

j k j j
k

k
x c x 




 
  



  
 


Denote by E1  the characteristic function of . For 

each  we define 
E

j

 .   (5) 

      2
0

1

ˆ ( ) 2 2 2
s

s lj l
j E

l j

m s   

 

  1Further, let us define subspaces  jV  and  jW  in 
as follows 2L 

  


for 1, 2,s j j     Since 0 i  and, for all nt E j  , 

0
    1j m   in some neighbourhood of zero, we obtain 

from Equation (3) 

 ,span :j j kV k   , 

 ,span :j j kW k       ( )ˆ ˆlim k
j j

k
   


  for all   .     (8) 

for all . j 
Let We say that a polynomial  satisfies the modified 

Cohen condition if there exists a W-compact subset  
of  such that  

m
E


         2

0
ˆ: 2k k j

j j nI n w d  
    , 

    int 0, 1, 0,1 modE E E     where , k j n  . Letting 2 s  , we have 

         
         

       

     

2

0
1

121 2
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1
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1 2

0
1

2 2 2 d

2 2

2 1

2 2 d ,

s
s ls j s l s j

j kE
l j

s
k ls j s l s j

k
l j

k ks j

s
l s l s j

k
l j

I k m w

m m w
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  and 

 inf inf 2 0j

j E
m




 



.           (6) 
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2
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 

  

  

 


 

 




 

 





    
 












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 Theorem. Suppose that the masks  satisfy the 
modified Cohen condition with a subset  and there 
exists  such that 

 
0
nm
E

0j 
   0 1nm    for all 00, 2 j   , .    (7) n

Then for any  the following properties hold: j 
2 that yields        1s s

j jI k I k
   s s

. By induction, we obtain a)  and ,j j L     supp [0,1]j  ; 

b)  and are orthonormal 
basis in 

 , :j k k   , :j k k  
jV  and jW , respectively; 

       1 1
0, .j

j j jI k I k I k k      

According to Equation (8), by Fatou’s lemma, we have c) 1j jV V , 1j j jV W V .  

         
2 2

0 0
ˆ ˆd lim d lim 0 1s s

j j j
s s

I     
 

 
Moreover, we have .    (9) 

 2

0 jj
V L




  . 

Corollary. The system 

    0 ,· : : ,j kk k j k        

Consequently,  2
j L    and, in view of Equa-

tion (5),  2
j L   . It is known that if  1f̂ L  

n
 

is constant on dyadic intervals of range , then 
supp f 0, 2n   

ˆ
 (see [16, Sect. 6.2]). Therefore, each 

function j  is constant on ,  , 1k k  k  , which 
implies  supp 0,1is an orthonormal basis in  2L  . 

j

In view of Equation (7), there exists 
. 

We prove this theorem in the next section. Then using 
the notion of an adapted multiresolution analysis sug- 
gested by Sendov [12], we discuss an application of the 
nonstationary dyadic wavelets to compression of the 
Weierstrass function and the Swartz function. 

0j   such 
that 

   0 2j jm  1  for all , 0j j E . 

Hence, for E , 

     
0

/2
0

1

ˆ 2 2
j

lj l
j

l j

m   

 

  . 2. Proof of the Theorem 

At first we prove the orthonormality of  ,j k k



. In 

view of It follows from Equation (6) that for some  1 0c 
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   0 12j jm c   for ,j E  .    
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ˆ2 2

2

j j

j j

j j

j j

j j

j
j

j j

j
j

j j
l l j

l

j
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 
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  




 

 

 

 

 




 




  









     

   

   

      


      







 



   1

2 ˆ2 .j
l jw    

 

Since 

   0 /2
1 ˆ | 2j j j

j Ec     1 ,   . 

We have  

         0
1 0

1

ˆ ˆ2 2
s

s lj j l s
j j

l j

c m      

 

  . 

or, taking into account Equation (3), 

   0( )
1ˆ ˆ| j js

j jc    ,    

for s j , . j 
Applying the dominated convergence theorem we ob-

tain 

   
     

2

0,

0

0

2

ˆ 2 d

ˆli

,

m 2

j
j k

s j
j k

s

k

w

w

   

d  





















   

Using the inverse Fourier-Walsh transform, we have 

          1 1
1 2 , 22 dj j

j l j l l
l

,j lx c x 


 




 


x  
which means that  is an orthonormal system.  ,j k k




Now, let us prove an orthonormality of  ,j k k




1

. 

For any  denote k       1
d 1

kj j
k kc


  . Then 

or, 

          1 1
1, 2 , 2 ,2 dj j

j k k l j l k l j l
l

x c x 


 
  



 


x . 

     1
, 2

1
d

2

j
j k l k j l

l

With Equation (11) it yields  
1,x x




 



 


.        (10) 1j j j

To conclude the proof it remains to show that 
V W V  

0 2jj
V L



  Since  .            (12) 
   

2 0d d 2j j
l l k k

l
, 









, Note, that by Equation (7) for any    there ex-
ist j  such that   /2ˆ 2 j

j  


 and, consequently, 
We have 

0
ˆsupp jj
 

  .           (13) 
   1 1

, , 2 2 1, 1,
,

,

1
, d d

2

.

,j j
j k j k l k s k j l j s

l s

k k

   




 
    










  For any x   the subspace 

0 jj
V



  is invariant 

with respect to the shift    f f x  . Actually, an  
Then from Equation (10)  arbitrary x   can be approximated by fractions 

2 j l , with arbitrary large . Besides, each j jV  is in-
variant with respect to the shifts 2 j l . By Equation (4) 
it is clear that 1j jVV  . 

1j jV V  , 1j jW V  .            (11) 

Let us define 

       
2 1

1
0

1
: d

2

n j

j j
k k

k

m w 




  . 

Denote 12 j    . Under the unitarity of the ma-

trices 

       
       
0 0

1 1

1 2

1 2

j j

j j

m m

m m

 

 

   
 
    

, 

We can write 

Let 
0 jj

f


 V . There exist  such that 1j 1j
f V  

and hence  · 2 j
jf l V   for all . The conti-  1j j

nuity of     0
· jj

f x V



  . If ·f x  implies that 

0j jg V



 , then approximating g  with f  from  

0 jj
V



  and using the invariance of a norm with re-  

spect to the shift, we obtain   0
· jj

g x V



  . 
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Denote by  0 jj
V







   the set of all f̂  such that  
and 

     11
k

k kg j h   j . 

0
j

j

f V




 . By the Weiner’s theorem we can write  For a given array  

   ,0 ,1
, 2 1

, , jj j
j

j a a a


A  ,    0 2jj
V L





  , for some measurable    . It 

the direct non-stationary discrete wavelet transform 
is clearly that  and, in view of Equa-  

0
ˆsupp jj



 

  1, 2 , 1, 2 ,, j k l k j l j k l k
l l

a h j a d g j a   
 

  j l 
 

, 
tion (13), we have  . Hence, the Equation (12) 
holds. The theorem is proved. 

  

maps it into  

   11,0 1,1 1,2 1
1 , , jj j j

j a a a    
 A   3. Numerical Experiments 

For any , let N     : 0, 2 1 2 j
j N N      , j  . 

According to [12] an adapted multiresolution analysis 
(AMRA) of rank  in  is a collection of closed 
subspaces j , , which satisfies the fol- 
lowing conditions: 

N
2

 2L 
  j V L

and 

   11,0 1,1 1,2 1
1 , , jj j j

j a a a    
 D  . 

The inverse transform is defined as follows 
1) 1j jV V   for all j  ;    , 2 1, 2 1,j l l k j l l k j

k

a h j a g j d l   


 


 
 0

2
jj

V L



  ; 2) 

and reconstructs  jA  by  and  1j A   1j D . 
According to [12] in order to choose the filter  jc  to  

3) For every  there is a function j  j  in 
 with a finite support  such that  2L 


 j N

  · 2 :j
j k k  maximize 

1

2

jVf 
 in Equation (16), we must solve the    is an orthonormal basis of jV ; 

4) For every  there exists a filter j  following problem. 
Problem 1. Let  1

NU be the subset of the 2N-dimen- 
sional Euclidean space 2N , which consists of the points 

 10 1 2, , , Nu u u u    satisfying the conditions 

    2 1

0

N

k k
j c j




c  

such that  
2 1 2 1

2
2

0 0

1, 0
N N l

k k l k
k k

u u u
  


 

   .              (17)       
2 1

1
0

2
N

j
j k j

k

x c j x k 







   , .    (14) j

The sequence  j  from condition (4) is called a 
scaling sequence for given an AMRA. The correspond-
ing a wavelet sequence  j  can be defined by 

for 0,1 , 1l N  . Find a point  for which *u

(1)

2 1 2 1
* *

, ,
, 0 , 0

sup
N

N N

m k m k m k m k
m k m ku U

u u F u u F
 

 


 

 
 


 ,      (18) 

      1 2 1
0

1 2
k

2 1N

j
j N k j

k

x c j x  
  



  


k .   (15) 
where ,m kF  is a 2 2N N  symmetric matrix. 

Problem 1 has a solution since NU  is a compact. But, 
as noted in [12], the numerical solution of this problem is 
not trivial even for 2N  . 

Denote by jW  the orthogonal complement of 1jV   
in jV . It is known that, under some conditions, the sys-  

tem  is an orthonormal basis of    j · 2 :j k k   Concerning the standard Haar and Daubechies (with 4 
coefficients) discrete transforms see, e.g., [17]; we will 
denote them as SWTH and SWTD, respectively. We 
write NSWTH for the simplest case of a multiresolution 
analysis of rank 1 which is considered in [12, Sect. 3] 
(see also [13]). The nonstationary Daubechies discrete 
wavelet transform which corresponds an AMRA of rank 

 are defined in [12] and we will use the symbol 
NSWTDN to denote this transform (see NSWTD1 and 
NSWTD2 in the tables below). 

N

jW  (for more details, see, e.g., [14, Sect. 8.1]). More-
over, if Af  denotes the projection of a function 

 on the subset , then 2f L   2A L 

0

22 
2

0
jV W

j

f f f


   

and 

1

2 2

j j jV V Wf f f


 
1

2


.         (16) 

Method A associated with one of the mentioned above 
discrete wavelet transforms (cf. [17, Chap.7]) consists of 
the following steps: 

Let us denote 

    2k kh j c j  
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1

all points   2
0 1 2 1, , , N

Nu u u u  
2 2

Step 1. Apply the discrete wavelet transform  
times to an input array  and get the sequence 

j
 jA

  such that 

    1, 0,1, , 1.l l Nu u l N     
       0 0 , 1 ,, , j D DA D  . 

For every  2
Nu U  we define 

Step 2. Allocate a certain percentage of the wavelet 
coefficients with lagest absolute value (we choose 10%) 
and nullify the remaining coefficients. 

    
2 1

0

1
2

N

k j j
j

c u u w k N
N





   

Step 3. Apply the inverse wavelet transform to the 
modified arrays of the wavelet coefficients. 

for 0,1, , 2 1k N 
2 1N

. Find a point  for which *u

   

   
(2)

* *
,

, 0

2 1

,
, 0

sup ,
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N

m k m k
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c u c u F

c u c u F




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





 





       (19) 

Step 4. Calculate    
2

 j jA A , where  j  is 
a reconstructed array

A
. 



In Method B the second step is replaced on the uni-
form quantization and the forth step is replaced on the 
calculation of the entropy of a vector, obtained in the 
third step. where ,m kF  is a 2 2N N  symmetric matrix. 

We recall that  1, , my yy   is a vector uniform 
quantization for given vector  1, , mx xx , if 

Given an array , we de-   j aA  ,0 ,1 ,2 1
, , jj j j
a a




fine the matrix ,m kF  in Problem 1 and Problem 2 by 

 

0, ,

sign , ,
2

j

j j
j j

x

y x
x x

  
    
      

, ,2 ,2m k j s m j s m
s

F a a 
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

 


 

and 

, ,2 ,2m k j s m j s m
s

F a a


 


 


, where  is the length of the quantization interval. 
The value  will be calculated by 

respectively. Here , 0j sa   for . Sup- 
pose that  is a solution of Equation (19). Then the 
direct and inverse nonstationary discrete dyadic wavelet 
transforms are defined by 

 0,1, , 2 1js 
*u 11

max min 50.j j
j mj m

x x
  
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The Shannon entropy of  is defined by the formula x
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j j
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j
j k l k

l

a h


 


 


j la  
1, 2 ,

j, j k l k
l

d g


 


 


j la

1,

, 

where jp  is frequency of the value jx .    
, 2 1, 2

j j
j l l k j l l k j

k

a h a g d


l   
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

 

, 
Let us consider a similar approach associated with the 

following problem: 
where  *j   and    

11
kj j

k kg h   . We 2k kh c uProblem 2. Let . Denote by 12nN   2
NU  the set of  

 
Table 1. Values of the square error corresponding to Method A. 

 SWTH NSWTH NSWTL1 SWTD NSWTD1 NSWTD2 NSWTL2 

  0.166547 0.123983 0.123980 0.248311 0.167071 0.128120 0.122886 

0.9,3  15.823238 14.802541 14.802635 14.290849 14.807025 14.275246 14.022471 

0.9,5  16.813738 15.932313 15.932307 15.378600 15.171461 14.782221 15.130797 

0.9,7  15.887306 13.631379 13.631383 15.595433 16.649683 12.724437 12.674001  

 
Table 2. Values of the entropy obtained by Method B. 

 SWTH NSWTH NSWTL1 SWTD NSWTD1 NSWTD2 NSWTL2 

  0.320865 0.327626 0.310639 0.863949 0.299818 0.304681 0.241210 

0.9,3  4.486757 3.810555 3.772764 4.152313 3.822598 3.525294 3.466450 

0.9,5  4.688737 3.874187 3.848227 4.224801 4.106692 3.766994 3.700762 

0.9,7  4.392570 3.371864 3.344916 4.001358 4.435942 3.232151 3.197167 
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denote these discrete transforms as NSWTL1 if 1N   
and as NSWTL2 if . 2N 

Let us recall that the Weierstrass function is defined as 

   ,
1

1
cos π , 0 1,n n

n

x x     






    , 

and the Swartz function is defined as 

 
 

1

2

4

n

n
n

h x
x





  , 

where      h x x x x   . We will consider arrays 
 with elements a8,k =(8)A , 128k   or a8,k = 

 256k , . Then we use the Matlab 
function fminsearch to solve the optimization problems 
in Equations (18) and (19). The results of these numerical 
experiments are presented in Tables 1 and 2. We see that 
in several cases the introduced nonstationary dyadic 
wavelets have an advantage over the classical Haar and 
Daubechies wavelets. 

0, , 255k  
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