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ABSTRACT

Using the Walsh-Fourier transform, we give a construction of compactly supported nonstationary dyadic wavelets on
the positive half-line. The masks of these wavelets are the Walsh polynomials defined by finite sets of parameters. Ap-
plication to compression of fractal functions are also discussed.

Keywords: Walsh Functions; Nonstationary Dyadic Wavelets; Fractal Functions; Adapted Multiresolution Analysis

1. Introduction

As usual, let R, =[0,4) be the positive half-line,
Z,={0,1,2,---} be the set of all nonnegative integers,
and let N={1,2,---} be the set of all positive integers.
The first examples of orthogonal wavelets on R, re-
lated to the Walsh functions and the corresponding
wavelets on the Cantor dyadic group have been con-
structed in [1]; then, in [2] and [3], a multifractal struc-
ture of this wavelets is observed and conditions for
wavelets to generate an unconditional basis in L -spaces
for all 1<q<o have been found. These investigations
are continued in [4-10] where among other subjects the
algorithms to construct orthogonal and biorthogonal
wavelets associated with the generalized Walsh functions
are studied. In the present paper, using the Walsh-Fourier
transform, we construct nonstationary dyadic wavelets on
R, (cf. [11-13], [14, Ch.8]).

Let us denote by [x]| the integer part of X . For
every XeR, , weset

X; =[2"XJ(mod2),X7j =[2HX](mod2), jeN,
where x;,x_; €{0,1} . Then

x=2xj2“"1+2xj2‘j )

j<0 >0
The dyadic additionon R,
x®y=Z|xj —yj|2‘j‘1+2|xj —yj|2‘j .

j<0 j<0

is defined as follows

Further, we introduce the notations

(%) =(-1)" o (x0)= 3 X0 +X o,

i=t

where X, <R, . Then the Walsh function w, of order
k is w (x)=xz(xk) (see, e.g., [15]).
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The Walsh-Fourier transform of every function f
that belongs to L' (R, )NL*(R,) is defined by

fA(a)):-[: f(X)x(x0)dx, weR,.

and extent to the whole space L*(R,) in a standard
way. The intervals

Al =[k2‘”,(k+1)2‘“), keZ, ,

are called the dyadic intervals of range n . The dyadic
topology on R, is generated by the collection of dy-
adic intervals. A subset E of R, which is compact in
the dyadic topology will be called W-compact.

For any jeZ, we define ¢; and y; by the fol-
lowing algorithm: ‘

Step 1. For each j €N choose n; N, and b eC,
k=0,1---,2" 1, such that

. 2 . 2
S SR
forall k=0,1,---,2"" —1.
Step 2. Define the masks
(i) 1S
mg (Q)ZE > ' () )
k=0

with the coefficients
: 1 2 . o
c,(g):_znj_l .Z; b{w (27K), k=0,1,+-,2" -1,
so that m{’ (w)=b"" for all @eA” (cf. [15, Sect.
9.7)).
Step 3. Foreach jeZ, put

by (@)=2" T m (2" 0). 3)

I=j+1
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so that

2n]-v-l 1

Q)J-(X) \/’ z CkJJrl ¢J+1(X®2 - ]k) (4)
Step 4. Define y; by the formula
1 2"]*11 k+1 + k
vil)=7 X (-)"ea Jﬂ(x@wj )

Further, let us define subspaces {Vj} and {Wj} in
L* (R, ) as follows

\7 :span{(pj’k -k eZ+} ,

W, :sp.'axn{l//jyk ke Z+}

forall jeZ, .
We say that a polynomial m satisfies the modified
Cohen condition if there exists a W-compact subset E

of R, such that
intE>0,u(E)=1,E=[0,1)(modZ, )
and
. . _J'
ﬂrelgglg m(2 a))‘>0. 6)

Theorem. Suppose that the masks m(()”) satisfy the
modified Cohen condition with a subset E and there
exists J, € N such that

m(()n)(a)):l for all a)e[O,Z’j“), neN. 7

Then forany jeZ,

a) ¢y, el’(R,) and suppe; <[0,1];

b) {goj,k :keZ+} and {y/j,k:keZ+}are orthonormal
basisin V; and W,, respectively;

o) V;cV, vV, ®W,; =V,,,

Moreover, we have
UJ OVJ - Lz( )
Corollary. The system
{00 (- ®k):k eZ+}u{(//j’k: j.k eZ+}

is an orthonormal basis in L (R+) .

We prove this theorem in the next section. Then using
the notion of an adapted multiresolution analysis sug-
gested by Sendov [12], we discuss an application of the
nonstationary dyadic wavelets to compression of the
Weierstrass function and the Swartz function.

the following properties hold:

j+1 o

2. Proof of the Theorem

At first we prove the orthonormality of {(pjﬂk}k . In
view of '
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a))|2 W, (Z_ja))da),

<(pj,0’(pj,n> = <¢3j,0’¢j,n> = J: @
let us show that
] : |¢’i (

Denote by 1.
each | we define

o @) =2 [T m) (27

I=j+1

o) w, (27 0)do=6,,. neZ

4.

the characteristic function of E . For

a))lE (2_5 a))

for s=j+1,j+2,--- Since OcintE and, forall jeZ,,
m{” (@)=1 in some neighbourhood of zero, we obtain
from Equation (3)

lim 3\ (0)=¢,(w) forall weR,. )

k—o0

Let

|<)[n]:z

where k> j, neZ,.Letting {=2"w, we have

Hl) a))‘z w, (2‘j a))da),

P ZSJJHI (27w (270 )dg
=27 [mi( \H (2e) w27 )ag
]! ( (& +|mi? (¢ #1720 |
XH (2'¢ \w (21¢)ac,

I=j+1
that yields IES) [k]= IES_I) [k] . By induction, we obtain
=1 k] = 8,

Fk]=15" k] =

Accordmg to Equation (8), by Fatou’s lemma, we have

Jy 1y (@
Consequently, ¢, € L2(R+) and, in view of Equa-
tion (5), w;eL’(R,). It is known that if fel'(R,)

is constant on dyadic intervals of range n , then
supp f c[O 2”] (see [16, Sect. 6.2]). Therefore, each

| do<tim[[p )rda) = 1im1{[0]=1.(9)

S—H®

function @; is constant on [k,k+1), keZ,, which
implies suppo; <[0,1].
In view of Equation (7), there exists j, € N such

that
méj)(Z'jaJ)=1 forall j>j,, weE.
Hence, for weE ,

b (@)=2 T m (2" o).

I=j+1

It follows from Equation (6) that for some ¢, >0
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‘mgj)(Z’ja))‘ch for jeN, weE.

(0)|[227"1¢ (@), 0<R,.

@E)( )‘<CJ JOl_[‘m 2 a)HgoJ 2 a))‘

I=j+1
or, taking into account Equation (3),
|¢3}s) (a))| <) |(?)j (a))|, welR,
for s>j, jeZ,.
Applying the dominated convergence theorem we ob-

tain
[ |y (

i o

S0

= 50,k >

a))|2 W, (2” a))da)

a))‘2 W, (Z’j a))da)

which means that {¢j,k }k , is an orthonormal system.

Now, let us prove an orthonormality of {l//j’k}k ,

Forany keZ, denote d{)=(-1)"c{, . Then

w(x)= Zd.é?kwm.( ). (10)

|€Z

Since

vy, di'd

leZ,

I@Zk - 250 k>
We have

Viks lek s@2k \Pj+11> Pjsis
< k‘//Jk> Zd@* J+1< >

| ,S€Z,

= 5k,k'-
Then from Equation (10)

V, eV, WV, (11)

j+1 2
Let us define
1 2"

Zd Wk( ).

2kO

m’ (o) :=

Denote @' =2"""® . Under the unitarity of the ma-
trices

m (o) mi) (o' +1/2)
i (0) 0 +1/2))

We can write
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Pin (@) =0y, (@)
o Im (@] +|mi (@ |

+ méj*‘) (o) m(()j”) (o' +1/2)

+m{i* (w')m;w(w’ﬂ/zﬂ}

= m(()j“) (o) + m(()j“) (o' + 1/2)}

xmy™ (@) by, (@)

" mfi+'>(w')+mfi+'>(au/z)]

xm™ (@), (@)
=V2 35wy (27 ) gy (o)

leZ,

w23 dl M, (2’j'1a))1/7j (o).

leZ

Using the inverse Fourier-Walsh transform, we have
01 (0 =2 T (@0, (0)+ 8 ()

or,

Prax (X)= 2y (CKQJBJ;I i1 (X)+ dkgzll)l//j (X ))

lezZ,

With Equation (11) it yields V; ®W; =V,
To conclude the proof it remalns to show that

UioVi=L(R.). (12)

Note, that by Equation (7) for any weR, there ex-
ist jeZ, suchthat ¢,(@)=2""" and, consequently,

UTzosuppg?Jj =R,. (13)

For any XxeR, the subspace szovJ is invariant

with respect to the shift f () f(-@x). Actually, an

can be approximated by fractions
Besides, each V; is in-
By Equatlon 4)

arbitrary XxeR,
27’1, with arbitrary large j .
Varlant with respect to the shifts 2771 .

itis clear that V; <V, .

Let f er:O j - There exist j, such that feV;
and hence f ( @2”1) €V, forall j=j, . The conti-
nuity of ||f (-®x) " implies that f (- ®x)e UJ AR

g EU-fij’ then approximating g with f from

U, _,V; and using the invariance of a norm with re-

X)e UT:OVJ- )

spect to the shift, we obtain g(- @
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Denote by (Ujf’zovj) the set of all f such that

f eUVj . By the Weiner’s theorem we can write
j=0

(U] =

is clearly that UT:O

tion (13), we have Q=R, . Hence, the Equation (12)
holds. The theorem is proved.

,(Q), for some measurable Qc R,

suppp; = Q and, in view of Equa-

3. Numerical Experiments

Forany NeN,let A, (N)::[O,(ZN -1)
According to [12] an adapted multiresolution analysis
(AMRA) of rank N in L*(R) is a collection of closed
subspaces V; c L*(R), jeZ,, which satisfies the fol-
lowing conditions:

1) V,cV,, forall jeZ,;
2) U,OV,—LZ( ):
3) For every jeZ, there is a function ¢; in

L’ (R) with a finite support A;(N) such that
{goj ( -—k2! ): ke Z} is an orthonormal basis of V,;

4)Forevery jeZ, there exists a filter

. .\)2N-1
c(i)={c (D)},
such that

2

9. (X)=

k

=4

-1

c(i)o;(x—k27), jeN.  (14)

I]
—— O

The sequence (pj} from condition (4) is called a
scaling sequence for given an AMRA. The correspond-

ing a wavelet sequence {(// j} can be defined by
2N-1
k . i
‘//H(X)z Z(_l) Cszkq(J)ng(X_kz J)~ (15)
k=0
Denote by W; the orthogonal complement of V,

in V,
i
tem {l//j(' —k2’j):keZ} is an orthonormal basis of

W; (for more details, see, e.g., [14, Sect. 8.1]). More-
over, if f, denotes the projection of a function
f e ’(R) onthesubset Ac L*(R), then

I6F 1+ Sl [

2 2
|,

hk(j):ck(j)/x/E

. It is known that, under some conditions, the sys-

and
2

+fu (16)

Let us denote
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Z’j], JeZ, .

and

For a given array

A(j): aj,o’aj,l""amj nE

the direct non-stationary discrete wavelet transform

“1k :Zhl—zk(j)aj,l’ dj—l,k :égl—zk(j)aj,l >

leZ
a
’ j—1,2J"—1}

D( j _1) = {aj—LO’ s aj-l,zj"-l} )
The inverse transform is defined as follows

a;, = é Mo (1)@ + 9 (§)d,

and reconstructs A(j) by A(j-1) and D(j-1).
According to [12] in order to choose the filter c(j) to

maps it into

A(j_l):{ajq,oaale”

and

2
maximize fvj,l “ in Equation (16), we must solve the

following problem.

Problem 1. Let U{'be the subset of the 2N-dimen-
sional Euclidean space R*" , which consists of the points
U=(Uy,U,,-,U,y_,) satisfying the conditions

Dug=1 Y Uy, =0. (17)
k=0 k=0

for 1=0,1---,N —1.Find apoint u" for which
2N-1 - 2N-1
D UU R = sup 4 D uuF (18)
m,k=0 ueu ) (mk=0

where ”Fm’k" isa 2N x2N symmetric matrix.

Problem 1 has a solution since U, is a compact. But,
as noted in [12], the numerical solution of this problem is
not trivial even for N =2.

Concerning the standard Haar and Daubechies (with 4
coefficients) discrete transforms see, e.g., [17]; we will
denote them as SWTH and SWTD, respectively. We
write NSWTH for the simplest case of a multiresolution
analysis of rank 1 which is considered in [12, Sect. 3]
(see also [13]). The nonstationary Daubechies discrete
wavelet transform which corresponds an AMRA of rank

N are defined in [12] and we will use the symbol
NSWTDN to denote this transform (see NSWTDI1 and
NSWTD2 in the tables below).

Method A associated with one of the mentioned above
discrete wavelet transforms (cf. [17, Chap.7]) consists of
the following steps:

AJCM



86 Y. A. FARKOV, E. A. RODIONOV

Step 1. Apply the discrete wavelet transform j
times to an input array A( j) and get the sequence

A(0).D(0).D(1),--.D(j-1).

Step 2. Allocate a certain percentage of the wavelet
coefficients with lagest absolute value (we choose 10%)
and nullify the remaining coefficients.

Step 3. Apply the inverse wavelet transform to the
modified arrays of the wavelet coefficients.

all points U= (U, U, -, U,y ) € R*™ such that
(ul )2 +(UI+N )2 =17| =0919”‘aN _1-

Forevery ueU ﬁ,z) we define

2N-1

(W) =5y 2 4 (/(2N)

for k=0,1,---,2N -1 . Findapoint u" for which

Step 4. Calculate |A(j)~ A(j)],. where A(j) is Y o (0)e (U)o
a reconstructed array. mk=0 ’
In Method B the second step is replaced on the uni- 2N-1 (19)
form quantization and the forth step is replaced on the = SLlB){mZk:o Cy (U)cy (u) Fm,k}o
uelUy k=

calculation of the entropy of a vector, obtained in the
third step.
We recall that y={y,,---,y,} is a vector uniform
quantization for given vector X =(x,--, X ), if
0, |x i | <A,
Yi= X; A
i .
A{X}-ﬂgn(xj )E’|Xj|2 A,

where A is the length of the quantization interval.

where ||Fm,k|| isa 2N x2N symmetric matrix.

-,a }, we de-

Given an array A(j):{aj’o,aj,l--

201

fine the matrix " Fok " in Problem 1 and Problem 2 by

Fm,k = Z aj,25+maj,25+m
SeZ
and

I:m,k = Z aj,2s®maj,25®m s

The value A will be calculated by S<Zy
respectively. Here a; =0 for s¢ {0,1,---,2j —12\. Sup-
pose that u” is a solution of Equation (19). Then the
direct and inverse nonstationary discrete dyadic wavelet
transforms are defined by

ik = Z hl(@J)zkaj,l > dj—l,k = Z g.%lkau >

leZ, leZ

A:(maxX- — min X-)/SO.

1<j<m 1<j<m )

The Shannon entropy of X is defined by the formula
H(x)=-2p; log (p; ).
j=1

where p; is frequency of the value X; . a, =Y h) a  +gl) d.
Let us consider a similar approach associated with the 1 Kz, 19275 T IOz

following problem: - . - kKo (i
Problem 2. Let N =2"". Denote by Uf\,z) the set of where h‘gj) =G (u )/\/E and g‘gj) =(-1) hl(é{‘ - We

Table 1. Values of the square error corresponding to Method A.

SWTH NSWTH NSWTLI1 SWTD NSWTDI1 NSWTD2 NSWTL2
S 0.166547 0.123983 0.123980 0.248311 0.167071 0.128120 0.122886
Wiss 15.823238 14.802541 14.802635 14.290849 14.807025 14.275246 14.022471
Wyos 16.813738 15.932313 15.932307 15.378600 15.171461 14.782221 15.130797
Wy, 15.887306 13.631379 13.631383 15.595433 16.649683 12.724437 12.674001

Table 2. VValues of the entropy obtained by Method B.

SWTH NSWTH NSWTLI1 SWTD NSWTDI1 NSWTD2 NSWTL2
S 0.320865 0.327626 0.310639 0.863949 0.299818 0.304681 0.241210
Wies 4.486757 3.810555 3.772764 4.152313 3.822598 3.525294 3.466450
Wyos 4.688737 3.874187 3.848227 4.224801 4.106692 3.766994 3.700762
Wiss 4392570 3.371864 3.344916 4.001358 4.435942 3.232151 3.197167

Copyright © 2012 SciRes. AJCM
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denote these discrete transforms as NSWTLI1 if N =1
and as NSWTL2if N=2.
Let us recall that the Weierstrass function is defined as

Wa’ﬂ(x):ia" cos(ﬂ"nx), O<ac<l, ﬂzl,
n=l a

and the Swartz function is defined as

© h(z”x)

S()=3 "

where h(x)=[x]-+/x—[x] . We will consider arrays
A@®) with elements agx = W), ,(k/128) or agx =
S(k/256), k=0,---,255. Then we use the Matlab
function fminsearch to solve the optimization problems
in Equations (18) and (19). The results of these numerical
experiments are presented in Tables 1 and 2. We see that
in several cases the introduced nonstationary dyadic
wavelets have an advantage over the classical Haar and
Daubechies wavelets.
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