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Examples of frames on the Cantor dyadic group

Yuri A. Farkov
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Abstract. In this expository paper, we present two ways to constract
frames on the locally compact Cantor dyadic group. The first approach
gives a Parseval frame related to the generalized Walsh–Dirichlet kernel
while the second approach includes the Daubechies type “admissible con-
dition” and leads to dyadic compactly supported wavelet frames. The
corresponding wavelet constructions on the Cantor and Vilenkin groups
(as well as on the half-line R+) requires an additional constraint related
to the requirement that the masks have no blocking sets.
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1. Introduction

The Walsh functions can be considered as characters of the Cantor
dyadic group. This fact was first recognized by Gelfand in 1940s, who
offered to Vilenkin study series with respect to characters of a large class
of Abelian groups which includes the Cantor dyadic group as a special
case (see [1, p. 3]). The basic properties of the Cantor dyadic group
are given in Pontryagin’s book [2]. Concerning its applications to the
theory of trigonometric Fourier series see, e.g., [3]. At present the Walsh
analysis is an actively developing domain of the harmonic analysis (see,
e.g., [4–9]).

Let us recall definitions of the dyadic field F and the Cantor dyadic
group G. Denote by F2 the field of order 2, with elements {0, 1}. Then
the dyadic field F is the subset of

∏
j∈Z

F2 consisting of sequences

x = (xj) = (. . . , x−2, x−1, x0, x1, x2, . . . ),
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for which xj → 0 as j → −∞. Addition on F is the coordinate-wise
addition modulo 2 :

(zj) = (xj) ⊕ (yj) ⇐⇒ zj = xj + yj (mod 2),

while multiplication on F follows the rule

(zj) = (xj) · (yj) ⇐⇒ zj =
∑

l+k=j

xlyk (mod 2).

Define projections πj : F → {0, 1} by πj(x) = xj where x = (xj)
and, for each n ∈ Z, choose an unit element en ∈ F such that

πj(en) =

{
1, j = n,

0, otherwise.

Notice that en · x = (xj−n) for all x = (xj) ∈ F.

Denote by θ the zero sequence in F. We see that for each x ∈ F with
x 6= θ there exists s(x) ∈ Z such that

xs(x) = 1 and xj = 0 for j < s(x).

There is a non-Archimedean norm on F. Indeed, set ‖θ‖ = 0 and for each
x ∈ F with x 6= θ set ‖x‖ = 2−s(x). Then

‖x+ y‖ ≤ max{‖x‖, ‖y‖} and ‖x · y‖ = ‖x‖‖y‖

for x, y ∈ F. The Cantor dyadic group G can be defined as the additive
group of the dyadic field F, with the topology induced by ‖ · ‖.

The sets

Ul := {(xj) ∈ G | xj = 0 for j < l}, l ∈ Z,

form a complete system neighbourhoods of θ and they satisfy the follow-
ing properties:

• Ul+1 ⊂ Ul,
⋂
Ul = {θ},

⋃
Ul = G;

• each Ul is a compact open subgroup of G;

• each Ul is homeomorphic to the Cantor ternary set.

The group G is a locally compact abelian group. Denote by µ the
Haar measure on G normalized so that µ(U) = 1 where U := U0.
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One can show that G is self-dual. The duality pairing on G takes
x, ω ∈ G to

(x, ω) := (−1)π−1(x·ω).

For any nonzero a, the multiplication-by-a map is an automorphism of
G, with adjoint also multiplication-by-a. Let A be the automorphism of
G which coincides with the multiplication-by-e−1 (i.e., (Ax)j = xj+1 for
x = (xj) ∈ G). Notice that A takes U to the larger subgroup U−1 and
that A−l(U) = Ul for l ∈ Z.

As usual, let R+ = [0,+∞). We define a map λ : G→ R+ by

λ(x) =
∑

j∈Z

xj2
−j−1, x = (xj) ∈ G.

Take in G a discrete subgroup H = {(xj) ∈ G | xj = 0 for j ≥ 0}. The
image of H under λ is the set of non-negative integers: λ(H) = Z+. For
every α ∈ Z+, let h[α] denote the element of H such that λ(h[α]) = α.
Note that h[1] = e−1 since λ(en) = 1/2n+1 for n ∈ Z.

The Walsh functions on G can be defined by

Wα(x) = (x, h[α]), x ∈ G, α ∈ Z+.

It is well known that {Wα} is an orthonormal basis in L2(U) (e.g., [4, 6]).

We write dµ(x) = dx. For any function f ∈ L1(G)∩L2(G) the Fourier
transform f̂ , defined by

f̂(ω) =

∫

G

f(x)(x, ω) dx, ω ∈ G,

belongs to L2(G). The Fourier operator

F : L1(G) ∩ L2(G) → L2(G), Ff = f̂ ,

extends uniquely to L2(G). By the Plancherel theorem,

〈f, g〉 = 〈f̂ , ĝ 〉 for all f, g ∈ L2(G).

For any ψ ∈ L2(G) we let

ψj,α(x) := 2j/2ψ(Ajx⊕ h[α]), j ∈ Z, α ∈ Z+. (1.1)

In the sequel, 1E stands for the characteristic function of a subset E
of G.
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Example 1.1. The Haar wavelet on G can be defined by

ψH(x) =






1, x ∈ U1,

−1, x ∈ U \ U1,

0, otherwise.

Indeed, if ψ = ψH then {ψj,α : j ∈ Z, h ∈ H} is the Haar basis for
L2(G) (cf. [10, 11]). Further, we have

ψH(x) = ϕH(Ax) − ϕH(Ax⊕ h[1]),

where ϕH := 1U is the Haar function for G. Also, the following two
equalities are true:

ϕH(x) = ϕH(Ax) + ϕH(Ax⊕ h[1]) and ϕ̂H = ϕH .

The latter equality, in fact, shows that the Haar and Shannon wavelets
coincide on G (see [12] for the details).

The following two propositions are well-known (e.g., [13]):

Proposition 1.1. A sequence {gm} is a Parseval frame for a Hilbert

space H if and only if the following formula holds for every f ∈ H:

f =
∑

m∈M

〈f, gm〉gm.

Proposition 1.2. Let {gm} be a frame for H and let P : H → H be an

orthogonal projection. Then {Pgm} is a frame for P(H) with the same

frame bounds. In particular, if {gm} is an orthonormal basis for H, then

{Pgm} is a Parseval frame for P(H).

Example 1.2. If, for x ∈ G, we define ϕ(x) = 2−11U (A−1x), then

ϕ(x) = ϕ(Ax)+ϕ(Ax⊕h[3]) and ϕ(x) = ϕ(Ax⊕h[1])+ϕ(Ax⊕h[2]).

According Theorem 3.4 below, each function

ψ(x) = ϕ(Ax)−ϕ(Ax⊕h[3]) and ψ(x) = −ϕ(Ax⊕h[1])+ϕ(Ax⊕h[2]),

gives by (1.1) a Parseval frame for L2(G).
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2. Frames related to the generalized

Walsh–Dirichlet kernel

Let us recall that {ψj, α} is a frame for L2(G) if there exist positive
constants c0, c1 such that, for every f ∈ L2(G),

c0‖f‖
2 ≤

∑

j, α

| 〈f , ψj, α〉|
2 ≤ c1‖f‖

2.

The constants c0 and c1 are known respectively as lower and upper frame
bounds. If c0 = c1, we have a tight frame; in this case,

f = c0
−1

∑

j, α

〈f, ψj, α〉ψj, α, f ∈ L2(G).

A frame {ψj,α} will be called a Parseval frame if c0 = c1 = 1.

Let γ be a non zero element in G. The function Dγ : G→ R defined
by

Dγ(x) :=

∫

γU
(x, ω) dω, x ∈ G,

is called the generalized Walsh–Dirichlet kernel [4]. It is immediate from
the definition that D̂γ = 1γU . In particular, if γ = e0 then Dγ is the Haar
function ϕH , and if γ = e1 then we can write Dγ(x) = 2−11U (A−1x) (cf.
Example 1.2).

Define

Vj(γ) := {f ∈ L2(G) : f̂(ω) = 0 for ω ∈ G \Aj(γU)},

j ∈ Z, γ ∈ U1 \ U2. (2.1)

It is clear that the subspaces Vj(γ) satisfy the following conditions:

Vj(γ) ⊂ Vj+1(γ),
⋃
Vj(γ) = L2(G)

⋂
Vj(γ) = {θ}

(compare with the definition of an MRA below).

Proposition 2.1. Let ϕ = Dγ and ψ = DAγ − Dγ where γ ∈ U1 \ U2.

Suppose that the subspaces Vj(γ) are defined as in (2.1). Then the fol-

lowing are true:

(a) {ϕ(· ⊕ h) : h ∈ H} is a Parseval frame for V0(γ);

(b) {ϕj ,α : α ∈ Z+} is a Parseval frame for Vj(γ);
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(c) if f ∈ Vj(γ) then

f(x) =
∑

h∈H

f(A−jh)ϕ(Ajx⊕ h), x ∈ G; (2.2)

(d) {ψj,α : j ∈ Z, α ∈ Z+} is a Parseval frame for L2(G).

Proof. For γ = e0 we have ϕ = ϕU and the subspaces Vj(γ) form the
Haar multiresolution analysis in L2(G). In this case, ψ = ψH (see Ex-
ample 1.1). Now, let γ 6= e0 and assume that E = γU . Then the linear
mapping

P : L2(U) → L2(U), Pf = f · 1E ,

is an orthogonal projection. In fact, let L0(E) be the closure of the linear
span of {Wα · 1E | α ∈ Z+} in L2(U). If f ∈ L2(U) and g ∈ L0(E), then

〈f , g〉 =

∫

U

f(t)g(t) dt =

∫

E

f(t)g(t) dt =

∫

U

Pf(t)g(t) dt = 〈Pf , g〉.

Hence,

〈f − Pf, g〉 = 0 for all g ∈ L0(E).

Since {Wα |α ∈ Z+} is an orthonormal basis for L2(U), by Proposi-
tion 1.2 we obtain that {Wα1E | α ∈ Z+} is a Parseval frame for L0(E).
But for ϕ0,α(·) = ϕ(· ⊕ h[α]) with ϕ = Dγ we have

ϕ̂0,α(ω) = Wα(ω)ϕ̂(ω) = Wα(ω)1E(ω), α ∈ Z+.

Therefore, an application of the inverse Fourier transform shows that
{ϕ(· ⊕ h[α]) |α ∈ Z+} is a Parseval frame for V0(γ). Also, in view of
(2.1),

Vj(γ) = Dj(V0(γ)), where Df(x) = 21/2f(Ax).

Observing that ϕj,α = Djϕ0,α, we conclude that, for each j ∈ Z, the
system {ϕj α | α ∈ Z+} is a Parseval frame for Vj(γ). From this, by
Proposition 1, for any f ∈ Vj(γ) we have

f(x) =
∑

α∈Z+

〈f , ϕj,α〉ϕj,α(x), x ∈ G,

where

〈f , ϕj,α〉 = 2j/2
∫

G

f(x)ϕ(Ajx⊕ h[α]) dx
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= 2−j/2
∫

E

f̂(ω)1E(A−1ω)Wα(A−1ω) dω

= 2−j/2
∫

G

f̂(ω)χ(A−1h[α], ω) dω = 2−j/2f(A−1h[α]),

which yields (2.2). Now, let us denote by Wj(γ) the orthogonal comple-
ment of Vj(γ) in Vj+1(γ):

Wj(γ) = Vj(γ)
⊥ ∩ Vj+1(γ), j ∈ Z,

and let Ej := Aj+1(E) \ Aj(E). Then the orthogonal direct sum of all
Wj(γ) coincides with L2(G) and, for each j, the orthogonal projection
Qj : L2(G) →Wj(γ) can be defined as follows:

gj = Qjf ⇐⇒ ĝj = f̂ · 1Ej
, f ∈ L2(G).

Hence, for ψ = DAγ −Dγ , we see that

ψ̂j α(ω) = 2−j/2Wα(A−jω)1Ej
(ω), j ∈ Z, α ∈ Z+,

and that, for each j, the system {ψj α | α ∈ Z+} is a Parseval frame for
Wj(γ). The proposition is proved.

As a consequence, we obtain the following equality for Dγ :

Dγ(x) =
∑

h∈H

Dγ(A
−1h)Dγ(Ax⊕ h), x ∈ G.

Indeed, since Dγ ∈ V0(γ) ⊂ V1(γ), we can apply (2.2) for f = Dγ and
j = 1.

3. Examples of dyadic wavelet frames

Denote by L2
c(G) the set of all compactly supported functions in

L2(G). We say that ϕ ∈ L2
c(G) is a refinable function, if it satisfies

an equation of the type

ϕ(x) = 2
2n−1∑

α=0

aαϕ(Ax⊕ h[α]). (3.1)

The functional equation (3.1) is called the refinement equation. The
Walsh polynomial

m0(ω) =
2 n−1∑

α=0

aαWα(ω)
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is called the mask of equation (3.1) (or its solution ϕ). In view of (3.1),
we have ϕ̂(ω) = m0(A

−1ω)ϕ̂(A−1ω) Note that if a0 = a1 = 1/2 and
aα = 0 for all α ≥ 2, then equation (3.1) have the solution ϕ = 1Un−1 .
In particular, when n = 1, the Haar function ϕH satisfies this equation.

The sets

Un, s := A−n(h[s]) ⊕A−n(U), 0 ≤ s ≤ 2n − 1,

are cosets of the subgroup A−n(U) in the group U . For every 0 ≤ α ≤
2n − 1 the Walsh function Wα(·) is constant on each set Un, s. The
coefficients of equation (3.1) are related to the values bs = m0(A

−n(h[s]))
by means of the discrete Walsh transform

aα =
1

2n

2n−1∑

s=0

bsWα(A−nh[s]), 0 ≤ α ≤ 2n − 1,

which can be realized by the fast algorithm (e.g., [4,6]). Thus, any choice
of the values bs defines also the coefficients aα in (3.1).

We recall that a collection of closed subspaces Vj ⊂ L2(G), j ∈ Z,
is called a multiresolution analysis (an MRA) in L2(G) if the following
hold:

(i) Vj ⊂ Vj+1 for all j ∈ Z;

(ii)
⋃
Vj = L2(G) and

⋂
Vj = {0};

(iii) f(·) ∈ Vj ⇐⇒ f(A·) ∈ Vj+1 for all j ∈ Z;

(iv) there is a function ϕ ∈ L2(G) such that the system {ϕ(· ⊕ h) | h ∈
H} is an orthonormal basis of V0.

The function ϕ in condition (iv) is called a scaling function in L2(G).

We say that a function ϕ generates an MRA in L2(G) if the family
{ϕ(· ⊕ h) | h ∈ H} is an orthonormal system in L2(G) and, in addition,
the family of subspaces

Vj = closL2(G)span {ϕj,α | α ∈ Z+}, j ∈ Z,

is the MRA in L2(G). If a function ϕ generates an MRA in L2(G), then
it is a scaling function in L2(G). In this case the system {ϕj,α | α ∈ Z+}
is an orthonormal basis of Vj for every j ∈ Z and one can define an
orthogonal wavelet ψ in such a way that {2j/2ψ(Aj · ⊕h) | j ∈ Z, h ∈ H}
is an orthonormal basis of L2(G).
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Example 3.1. Let n = 2 and

b0 = 1, b1 = a, b2 = 0, b3 = b,

where | a|2 + | b|2 = 1. Then in (3.1) we have

a0 = (1 + a+ b)/4, a1 = (1 + a− b)/4,

a2 = (1 − a− b)/4, a3 = (1 − a+ b)/4.

Denote by ϕ the corresponding solution of equation (3.1). If a 6= 0, then
ϕ generates an MRA in L2(G) (see [14]). In particular, for a = 1 and
a = −1 the Haar function 1U and the displaced Haar function 1U (·⊕h[1 ])
are obtained respectively. If b = 1 and b = −1, we return to Example 1.2.
If 0 < | a| < 1, then ϕ can be written in the form

ϕ(x) = (1/2)1U (A−1x)

(
1 + a

∞∑

j=0

bjW2j+1−1(A
−1x)

)
, x ∈ G.

In this case,

ψ(x) = 2a0ϕ(Ax⊕h[1])− 2a1ϕ(Ax)+2a2ϕ(Ax⊕h[3])− 2a3ϕ(Ax⊕h[2]).

Also, when 0 < | b| < 1/2, the system {ψj, α} is an unconditional basis
in all spaces Lp(G), 1 < p < ∞. Moreover, the relevant wavelets on
the line may be identified as multiwavelets consisting of piecewise fractal
functions, in the sense of Massopust (see [15,16]).

Suppose that M either is the union of some of the sets Un−1, s, 1 ≤
s ≤ 2n−1 − 1, or coincides with one of these sets. Then we define

T (M) := {A−1(ω) | ω ∈M} ∪ {e0 ⊕A−1(ω) | ω ∈M}.

A set M is said to be blocking (for a mask m0) if it satisfies the condition

T (M) ⊂M ∪ {ω ∈ U | m0(ω) = 0}.

A compact subset E of G is said to be congruent to U modulo H
if µ(E) = 1 and, for each ω ∈ E, there is an element h ∈ H such that
ω⊕h ∈ U . We say that a mask m0 satisfies the modified Cohen condition,
if there exists a compact subset E of G containing a neighbourhood of θ
such that E congruent to U moduloH and infj∈N infω∈E |m0(A

−jω)| > 0.

Theorem 3.1. Let ϕ ∈ L2
c(G) be a solution of refinement equation (3.1)

such that ϕ̂(θ) = 1. Suppose that its mask m0 satisfies the condition

|m0(ω)|2 + |m0(ω ⊕ e0)|
2 = 1 for all ω ∈ G.

Then the following are equivalent:
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(a) ϕ generates an MRA in L2(G);

(b) m0 satisfies the modified Cohen’s condition;

(c) m0 has no blocking sets.

The proof of Theorem 3.1 is given in [17] (cf. [18, Theorem 3]) where
an algorithm for the expansions of a dyadic scaling function ϕ in Walsh
series is also discussed.

Now, we set

Dψ(ω) :=
∑

j∈Z

| ψ̂(A−jω)|2,

Ms, ψ := sup
ω∈G

∑

j∈Z

| ψ̂(A−jω)|| ψ̂(A−jω ⊕ h[s])|, s ∈ N.

Observe that Dψ(ω) = Dψ(Aω) for all ω ∈ G, and that supremum in the
definition of Ms, ψ is invariant under the transform ω 7→ Aω, so that this
supremum can be taken over ω ∈ U1, 0.

Theorem 3.2. Let ψ ∈ L2(G) be such that

c
(1)
0 := ess inf

ω∈G
Dψ(ω) −

∑

s∈N

Ms, ψ > 0,

and

c
(1)
1 := ess sup

ω∈G
Dψ(ω) +

∑

s∈N

Ms, ψ <∞.

Then {ψj, α} is a frame with frame bounds c
(1)
0 and c

(1)
1 .

Notice that Theorem 3.2 includes the Daubechies type “admissible
condition” (cf. [19, Section 3.3.2], [20]).

Let

g l, s(x) := 2−s1U (A−sx)wl(A
−sx), l, s ∈ Z+.

It is easy to check that ĝ l, s = 1Ul, s
, where, as before, Ul, s = A−l((h[s] ⊕

U). In particular, g1, 0 coincides with the Haar wavelet ψH . According
to [21,22], any compactly supported orthogonal wavelet in L2(G) can be
expanded in the gap series with respect to g l, s or coincides with a finite
linear combination of g l, s (several examples of such wavelets are given
in [23]).

Using Theorem 3.2 and the functions g l, s, we can construct frames
for L2(G). Note that similar examples of frames for the space L2(R+)
are given in [24].
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Example 3.2. Suppose that ψ = g l, s with l ∈ N, s ∈ Z+. Then for any

α ∈ N the supports of ψ̂(A−jω) and ψ̂(A−jω ⊕ h[α]) are disjoint. Since

ess inf
ω∈U1, 0

Dψ(ω) = ess sup
ω∈U1, 0

Dψ(ω) = 1,

we see that c
(0)
1 = c

(1)
1 = 1. Therefore, by Theorem 3.2, {ψj, α} is a

Parseval frame for L2(G).

Example 3.3. Let us assume that

ψ(x) = g1, 4(x) + νg1, 1(x),

where ν is a positive parameter. Then, for every ω ∈ G,

ψ̂(ω) = 1U1, 4(ω) + ν1U1, 1(ω), |ψ̂(ω)|2 = 1U1, 4(ω) + ν21U1, 1(ω),

and

ψ̂(A−jω)ψ̂(A−jω ⊕ h[α]) = 0 for all j ∈ Z, α ∈ N.

From these equalities we deduce that

c
(0)
1 = ν2, c

(1)
1 = 1 + ν2, c

(1)
1 /c

(0)
1 = 1 +

1

ν2
.

Thus, {ψj, α} tends to the tight frame when ν → ∞.

Example 3.4. Given a non zero element b ∈ G we let β = λ(b) and

denote by g
(β)
l, s a function in L2(G) such that ĝ

(β)
l, s = 1

U
(β)
l, s

, where U
(β)
l, s :=

b−s(h[l] + U), l ∈ N, s ∈ Z+. In particular, for b = e−1 we have g
(β)
l, s =

g
(1)
l, s = gl, s. As in Example 5, we obtain that if ψ = g

(β)
l, s , β > 1/2, then

{ψj, α} is a Parseval frame for L2(G). Moreover, using Theorem 3.2, we

derive the following frames for L2(G) with frame bounds c
(0)
1 and c

(1)
1 :

1) ψ(x) = g
(3/2)
1, 4 (x) + 2g

(3/2)
2, 1 (x), c

(0)
1 = 4, c

(1)
1 = 5,

c
(1)
1 /c

(0)
1 = 1, 25,

2) ψ(x) = g
(1)
3, 1(x) + 4g

(0, 85)
1, 1 (x), c

(0)
1 = 9, c

(1)
1 = 25,

c
(1)
1 /c

(0)
1 = 2, 777 . . . ,

3) ψ(x) = g
(0, 5)
2, 1 (x) + 3g

(0, 8)
1, 1 (x), c

(0)
1 = 4, c

(1)
1 = 22,

c
(1)
1 /c

(0)
1 = 5, 5.
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Given functions ψ1, . . . , ψN ∈ L2(G) and a number s ∈ {0, 1, 2} we
let

ψν, sj, α(x) := 2j/2ψν(Ajx⊕A−sh[α]), ν ∈ {1, . . . , N}, j ∈ Z, α ∈ Z+.

The set {ψν, sj, α} is called framelet for L2(G) if there exist positive constants

c0, c1 such that, for every f ∈ L2(G),

c0‖f‖
2 ≤

N∑

ν=1

∑

j, α

| 〈f , ψν, sj, α〉|
2 ≤ c1‖f‖

2.

Let us denote

Mν(h, s) := sup
ω∈G

∑

j

| ψ̂ν(A−jω)||ψ̂ν, s(A−jω ⊕Ash)|,

R(N)(s) :=
N∑

ν=1

∑

h∈H

Mν(h, s),

c
(N)
0 (s) := ess inf

ω∈G

N∑

ν=1

∑

j

| ψ̂ν, s(A−jω)|2 −R(N)(s),

c
(N)
1 (s) := ess sup

ω∈G

N∑

ν=1

∑

j

| ψ̂ν(A−jω)|2 +R(N)(s).

Theorem 3.3 (cf. [19, Section 3.3.4]). Let ψ1, . . . , ψN ∈ L2(G) be

such that c
(N)
0 (s) > 0 and c

(N)
1 (s) < ∞. Then {ψν, sj, α} is framelet for

L2(G) and

2sc
(N)
0 (s)‖f‖2 ≤

N∑

ν=1

∑

j, α

| 〈f , ψν, sj, α〉|
2 ≤ 2sc

(N)
1 (s)‖f‖2

for all f ∈ L2(G).

Theorem 3.4 (cf. [13, Theorem 1.8.11]). Let ϕ ∈ L2
c(G) be a solution

of refinement equation (3.1) and let its mask m0 satisfies the condition

|m0(ω)|2 + |m0(ω ⊕ e0)|
2 = 1 for all ω ∈ G. (3.2)

Suppose that ϕ is continuous at θ, ϕ̂(θ) 6= 0, and that ψ is defined by

ψ̂(ω) = m1(A
−1ω)ϕ̂(A−1ω), where m1 is a Walsh polynomial such that

the matrix (
m0(ω) m1(ω)
m0(ω ⊕ e0) m1(ω ⊕ e0)

)

is unitary for all ω ∈ G. Then {ψj, α} is a tight frame with frame bound

| ϕ̂(θ)|2.
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In particular, we can choose

ψ(x) = 2
2n−1∑

α=0

(−1)αa2n−1−αϕ(Ax⊕ h[α]), x ∈ G. (3.3)

Observe that when (3.2) holds and m0 has no blocking sets, Theorem
1 implies that ψ is an orthogonal wavelet for L2(G). Thus, if m0 has a
blocking set, than {ψj, α} will be a tight frame which is not a basis in
L2(G).

Example 3.5. Let us choose numbers a, b, c and α, β, γ such that

| a|2 + |α|2 = | b|2 + |β|2 = | c|2 + |γ|2 = 1.

Suppose that ϕ satisfies the refinement equation

ϕ(x) = 2
7∑

α=0

aαϕ(Ax⊕ h[α]).

with the coefficients

a0 =
1

8
(1 + a+ b+ c+ α+ β + γ),

a1 =
1

8
(1 + a+ b+ c− α− β − γ),

a2 =
1

8
(1 + a− b− c+ α− β − γ),

a3 =
1

8
(1 + a− b− c− α+ β + γ),

a4 =
1

8
(1 − a+ b− c− α+ β − γ),

a5 =
1

8
(1 − a+ b− c+ α− β + γ),

a6 =
1

8
(1 − a− b+ c− α− β + γ),

a7 =
1

8
(1 − a− b+ c+ α+ β − γ).

The blocking sets for the mask

m(ω) =
7∑

α=0

aαWα(ω)
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are: 1) U1,1 ∪ U2,1 for a = 0, 2) U2,1 ∪ U2,2 for a = β = 0, 3) U2,3

for c = 0, 4) U1,1 for b = c = 0. If abc 6= 0 then the modified Cohen
condition is fulfilled for E = U , and when a 6= 0, b = 0, c 6= 0 it holds
for E = A(U3,0 ∪ U3,1 ∪ U3,3 ∪ U3,6). Hence, by Theorem 3.1, if a and
c distinct from zero, then ϕ generate an MRA in L2(G). Now, let ψ be
given by (3.3). Then, applying Theorem 3.4, we conclude that if ac 6= 0
then {ψj, α} is an orthonormal basis in L2(G), and if ac = 0 then {ψj, α}
is a Parseval frame for L2(G).

Remark 3.1. The dyadic modulus of continuity of the scaling function
ϕ satisfying equation (3.1) is defined by the equality

ω(ϕ, δ) := sup{|ϕ(x⊕ y) − ϕ(x)| : x, y ∈ G, λ(y) ∈ [0, δ)}, δ > 0.

If ϕ satisfies ω(ϕ, 2−j) ≤ C2−αj , j ∈ N, for some α > 0, then there exists
a constant C(ϕ, α), such that

ω(ϕ, δ) ≤ C(ϕ, α) δα. (3.4)

Denote by αϕ the supremum for the set of all values α > 0 for which
inequality (3.4) holds. According to [21], if n = 2 then αϕ = log2(1/|b |),
where b as in Example 1.2. For the cases n = 3 and n = 4 some values
of αϕ are calculated in [23].

Remark 3.2. In [25], sevaral discrete p-dyadic wavelet bases for ℓ2(ZN )
are defined by finite collections of parameters. Similar bases for locally
compact Vilenkin groups were studied in [17] and [26]. Note that the
values of parameters in [24] are universal in the sense that they occur not
only in the construction of orthogonal wavelets in ℓ2(ZN ), but also in the
space ℓ2(Z+). At the same time, the corresponding wavelet constructions
on the Cantor and Vilenkin groups (as well as on the half-line R+; see
[27]) requires an additional constraint related to the requirement that
the masks have no blocking sets. The great freedom in the construction
of wavelets in ℓ2(ZN ) extends the range of applications of the adaptive
signal-approximation methods; some numerical experiments comparing
discrete dyadic wavelets with the Haar and Daubechies wavelets in an
image processing scheme are discussed in [28] and [29].
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