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Abstract—We describe algorithms for constructing biorthogonal wavelet systems and refinable
functions whose masks are generalized Walsh polynomials. We give new examples of biorthog-
onal sets of compactly supported wavelets on Vilenkin groups.
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It is well-known that orthogonal compactly supported wavelets on Vilenkin groups can be rep-
resented as lacunary series in generalized Walsh functions. In this paper we propose algorithms
for constructing biorthogonal wavelet systems and refinable functions whose masks are generalized
Walsh polynomials. We also give several new examples of biorthogonal wavelet systems.

1. PRELIMINARIES

The foundations of the theory of Walsh series and transforms as a branch of modern harmonic
analysis are expounded in the monographs [1–3]. While the harmonics eikt are characters of the
group of rotations of the circle, the Walsh functions are characters of the Cantor dyadic group.
Orthogonal wavelets and the corresponding refinable functions representable as lacunary Walsh
series were studied in [4–10]. For p ≥ 2, the Vilenkin group G can be defined as the weak direct
product of a countable set of cyclic groups of order p (in the case of p = 2, G is isomorphic to the
Cantor group). A peculiarity of the construction of wavelets on the Cantor and Vilenkin groups
is associated with the fact that these groups (as well as the additive group of the p-adic number
field) contain open compact subgroups (see [11]). In the present paper, by analogy with compactly
supported biorthogonal wavelets on R, which are determined by appropriately chosen trigonometric
polynomials (see, e.g., [12, Section 8.3.5; 13, Section 1.3]), we introduce biorthogonal wavelets and
refinable functions whose masks are generalized Walsh polynomials. Note that for each p ≥ 2 the
generalized Walsh functions under consideration are characters of the corresponding Vilenkin group.

Let G be a locally compact abelian group consisting of sequences of the form

x = (xj) = (. . . , 0, 0, xk , xk+1, xk+2, . . .),

where xj ∈ {0, 1, . . . , p − 1} for j ∈ Z and xj = 0 for j < k = k(x). The group operation on G is
denoted by ⊕ and defined as coordinatewise addition modulo p:

(zj) = (xj) ⊕ (yj) ⇔ zj = xj + yj (mod p) for j ∈ Z;

the topology on G is determined by the basis of neighborhoods of zero

Ul =
{
(xj) ∈ G | xj = 0 for j ≤ l

}
, l ∈ Z.

The group G is known as the Vilenkin group (see, e.g., [2, p. 511]). We denote the inverse operation
of ⊕ by � (so that x� x = θ, where θ is the zero sequence). Define U as a subgroup of G with the
set of elements U0.
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102 Yu.A. FARKOV

The Lebesgue spaces Lq(G) with 1 ≤ q ≤ ∞ are considered with respect to the Haar measure µ
defined on the Borel subsets of G and normalized by the condition µ(U) = 1. By (· , ·) and ‖ · ‖ we
denote the inner product and the norm on L2(G).

The dual group of G is denoted by G∗ and consists of sequences of the form

ω = (ωj) = (. . . , 0, 0, ωk, ωk+1, ωk+2, . . .),

where ωj ∈ {0, 1, . . . , p − 1} for j ∈ Z and ωj = 0 for j < k = k(ω). Addition and subtraction,
neighborhoods of zero {U∗

l }, and the Haar measure µ∗ are defined for G∗ in the same way as for G.
Each character of the group G can be represented as

χ(x, ω) = exp

(
2πi

p

∑
j∈Z

xjω1−j

)
, x ∈ G,

for some ω ∈ G∗. Consider the discrete subgroup H = {(xj) ∈ G | xj = 0 for j > 0} in G and
define an automorphism A ∈ AutG as (Ax)j = xj+1. It is easy to see that the quotient group
H/A(H) contains p elements, and the annihilator H⊥ of H consists of those sequences (ωj) ∈ G∗

in which ωj = 0 for j > 0.
Consider the mapping λ : G → [0,+∞) defined by

λ(x) =
∑
j∈Z

xjp
−j , x = (xj) ∈ G.

The image of the subgroup H under λ is the set of nonnegative integers: λ(H) = Z+. For each
α ∈ Z+, let h[α] denote the element of H such that λ(h[α]) = α (in particular, h[0] = θ). A mapping
λ∗ : G∗ → [0,+∞), an automorphism B ∈ Aut G∗, a subgroup U∗ in G∗, and elements ω[α] in H⊥

are defined by analogy with λ, A, U , and h[α], respectively. Note that χ(Ax,ω) = χ(x,Bω) for all
x ∈ G and ω ∈ G∗ (i.e., the automorphism B is conjugate to A).

Generalized Walsh functions for the group G can be defined as

Wα(x) = χ(x, ω[α]), α ∈ Z+, x ∈ G.

These functions are continuous on G and satisfy the orthogonality relations∫
U

Wα(x)Wβ(x) dµ(x) = δα,β, α, β ∈ Z+,

where δα,β denotes the Kronecker delta. It is known that the system {Wα} is complete in L2(U).
The corresponding system for the group G∗ is defined by

W ∗
α(ω) = χ(h[α], ω), α ∈ Z+, ω ∈ G∗.

The system {W ∗
α} is an orthonormal basis in L2(U∗).

For each function f ∈ L1(G) ∩ L2(G), its Fourier transform f̂ ,

f̂(ω) =
∫
G

f(x)χ(x, ω) dµ(x), ω ∈ G,

belongs to the space L2(G). The Fourier operator

F : L1(G) ∩ L2(G) → L2(G), Ff = f̂ ,
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BIORTHOGONAL WAVELETS ON VILENKIN GROUPS 103

admits a standard extension to the whole space L2(G). For any f, g ∈ L2(G), Parseval’s equality
(f, g) = (f̂ , ĝ ) holds.

We denote the support of a function f ∈ L2(G) by supp f ; it is defined as the minimal (with
respect to inclusion) closed set such that on its complement f vanishes almost everywhere. The set
of functions in L2(G) with compact support is denoted by L2

c(G).
Definition 1. A function ϕ ∈ L2

c(G) is called a refinable function if it satisfies an equation of
the form

ϕ(x) = p

pn−1∑
α=0

aαϕ(Ax � h[α]), x ∈ G, (1.1)

where aα are complex coefficients.
We denote the characteristic function of a set E ⊂ G by 1E . If a0 = . . . = ap−1 = 1/p and

aα = 0 for all α ≥ p, then the function ϕ = 1Un−1 is a solution of equation (1.1). The corresponding
orthogonal wavelets in L2(G) have the form

ψ(ν)(x) =
p−1∑
α=0

ενα
p ϕ(Ax � h[α]), ν = 1, . . . , p − 1,

where εp = exp(2πi/p) (cf. [14, Theorem 2; 15, Section 4]). Some other examples of refinable
functions determining orthogonal wavelets in L2(G) are given in [6] and [10].

The functional equation (1.1) is known as the refinement equation. Applying the Fourier trans-
form, we can write this equation as

ϕ̂(ω) = m(B−1ω)ϕ̂(B−1ω), (1.2)

where

m(ω) =
pn−1∑
α=0

aαW ∗
α(ω) (1.3)

is a generalized Walsh polynomial, which is called the mask of the refinable function ϕ.
The sets

U∗
n,s = B−n(ω[s]) ⊕ B−n(U∗), 0 ≤ s ≤ pn − 1, (1.4)

are cosets of the subgroup B−n(U∗) in the group U∗. Each function W ∗
α( ·) with 0 ≤ α ≤ pn − 1 is

constant on sets (1.4). The coefficients of the refinement equation (1.1) are related to the values bs

of mask (1.3) on the classes U∗
n,s by the direct and inverse Vilenkin–Chrestenson discrete transforms:

aα =
1
pn

pn−1∑
s=0

bsW
∗
α(B−nω[s]), 0 ≤ α ≤ pn − 1, (1.5)

bs =
pn−1∑
α=0

aαW ∗
α(B−nω[s]), 0 ≤ s ≤ pn − 1. (1.6)

Parseval’s formula for these transforms takes the form

pn−1∑
α=0

aαãα =
1
pn

pn−1∑
s=0

bsb̃s, (1.7)
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104 Yu.A. FARKOV

where aα, bs and ãα, b̃s are arbitrary sets of numbers satisfying equalities (1.5) and (1.6). The
algorithms for calculating the Vilenkin–Chrestenson discrete transforms are similar to the classical
fast Fourier transform algorithms (see, e.g., [2, p. 463]).

Theorem A. If a function ϕ ∈ L2
c(G) satisfies equation (1.1) and ϕ̂(θ) = 1, then

pn−1∑
α=0

aα = 1 and suppϕ ⊂ U1−n.

In the space L2
c(G), this solution of equation (1.1) is unique, is given by

ϕ̂(ω) =
∞∏

j=1

m(B−jω),

and satisfies the following conditions:

(1) ϕ̂(h∗) = 0 for all h∗ ∈ H⊥ \ {θ} (a modified Strang–Fix condition);
(2)

∑
h∈H ϕ(x ⊕ h) = 1 for a.e. x ∈ G (the partition-of-unity property).

Definition 2. We say that a function f ∈ L2(G) is stable if there exist positive constants c1

and c2 such that

c1

( ∞∑
α=0

|aα|2
)1/2

≤
∥∥∥∥∥

∞∑
α=0

aαf( · � h[α])

∥∥∥∥∥ ≤ c2

( ∞∑
α=0

|aα|2
)1/2

for every sequence {aα} from 2. In other words, a function f is stable in L2(G) if the functions
f( · � h) with h ∈ H form a Riesz system in L2(G).

We say that a function g : G∗ → C has a periodic zero at a point ω ∈ G∗ if g(ω ⊕ h∗) = 0 for all
h∗ ∈ H⊥. The following theorem characterizes compactly supported stable functions in L2(G).

Theorem B. For any function f ∈ L2
c(G), the following conditions are equivalent :

(a) the function f is stable in L2(G);

(b) the system {f( · � h) | h ∈ H} is linearly independent ;
(c) the Walsh transform of f has no periodic zeros.

Theorems A and B were proved in [10] and [16] (their L2(R+) analogs for p = 2 can be found
in [9]).

Definition 3. A family of closed subspaces Vj ⊂ L2(G), j ∈ Z, is called a multiresolution
analysis (or, briefly, an MRA) in L2(G) if the following conditions hold:

(i) Vj ⊂ Vj+1 for j ∈ Z;

(ii)
⋃

Vj = L2(G) and
⋂

Vj = {0};
(iii) f( ·) ∈ Vj ⇔ f(A · ) ∈ Vj+1 for j ∈ Z;
(iv) f( ·) ∈ V0 ⇒ f( · � h) ∈ V0 for h ∈ H;
(v) there exists a function ϕ ∈ L2(G) such that the system {ϕ( · � h) | h ∈ H} is a Riesz

basis in V0.

Given a function f ∈ L2(G), we set

fj,h(x) = pj/2f(Ajx � h), j ∈ Z, h ∈ H.
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BIORTHOGONAL WAVELETS ON VILENKIN GROUPS 105

Definition 4. We say that a function ϕ generates an MRA in L2(G) if, first, the family
{ϕ( · � h) | h ∈ H} is a Riesz system in L2(G) and, second, the closed subspaces Vj = span{ϕj,h |
h ∈ H} with j ∈ Z form an MRA in L2(G).

In [8, 10], for arbitrary p, n ∈ N with p ≥ 2, we found coefficients aα such that the refinement
equation (1.1) has a solution ϕ ∈ L2

c(G) in the form of a lacunary series in generalized Walsh
functions that generates an MRA in L2(G). Moreover, for each refinable function ϕ generating an
MRA in L2(G), we can construct orthogonal wavelets ψ(1), . . . , ψ(p−1) such that the functions

ψ
(ν)
j,h (x) = pj/2ψ(ν)(Ajx � h), 1 ≤ ν ≤ p − 1, j ∈ Z, h ∈ H,

form an orthonormal basis in L2(G).
Let us expand a refinable function in a lacunary Walsh series. Let l ∈ {0, 1, . . . , p − 1}, and let

δl denote the sequence ω = (ωj) in which ω1 = l and ωj = 0 for j = 1 (in particular, δ0 = θ). It is
easy to see that {

ω ∈ U∗ | χ(x, ω) = 1 for x ∈ A(H)
}

= {δ0, δ1, . . . , δp−1};

i.e., the set of sequences δl is an annihilator of the subgroup A(H) in H. Note that W ∗
α(δl) = εαl

p

and δl = B−nω[lpn−1] for 0 ≤ l ≤ p − 1.
Suppose that a function ϕ ∈ L2

c(G) is a solution of the refinement equation (1.1) and its mask
satisfies the conditions

m(θ) = 1 and
p−1∑
l=0

|m(ω ⊕ δl)|2 = 1, ω ∈ G∗.

Then, as shown in [8], we have

ϕ(x) =
1

pn−1
1U (A1−nx)

(
1 +

∑
l∈N(p,n)

cl[m]Wl(A1−nx)

)
, x ∈ G, (1.8)

where N(p, n) and cl[m] are defined as follows. Let us represent each l ∈ N in the form of a p-ary
expansion

l =
k∑

j=0

µjp
j, µj ∈ {0, 1, . . . , p − 1}, µk = 0, k = k(l) ∈ Z+, (1.9)

and denote the set of all positive integers l ≥ pn−1 for which the ordered sets (µj, µj+1, . . . , µj+n−1)
of the coefficients of (1.9) do not contain

(0, 0, . . . , 0, 1), (0, 0, . . . , 0, 2), . . . , (0, 0, . . . , 0, p − 1)

by N0(p, n). Then N(p, n) = {1, 2, . . . , pn−1 − 1} ∪ N0(p, n). Let

γ(i1, i2, . . . , in) = bs, s = i1p
0 + i2p

1 + . . . + inpn−1, ij ∈ {0, 1, . . . , p − 1},

where bs are defined by (1.6). Then

cl[m] = γ(µ0, 0, 0, . . . , 0, 0) if k(l) = 0,

cl[m] = γ(µ1, 0, 0, . . . , 0, 0)γ(µ0, µ1, 0, . . . , 0, 0) if k(l) = 1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cl[m] = γ(µk, 0, 0, . . . , 0, 0)γ(µk−1, µk, 0, . . . , 0, 0) . . . γ(µ0, µ1, µ2, . . . , µn−2, µn−1)

if k(l) ≥ n − 1.
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106 Yu.A. FARKOV

Note that in the last product the subscripts of each factor starting with the second are obtained by
shifting those of the preceding factor by one position to the right and placing one new digit from
the p-ary decomposition (1.9) at the vacant first position.

2. CONSTRUCTION OF BIORTHOGONAL WAVELETS
ON THE VILENKIN GROUP

Suppose given two refinable functions ϕ and ϕ̃ with masks

m(ω) =
pn−1∑
α=0

aαW ∗
α(ω) and m̃(ω) =

pñ−1∑
α=0

ãαW ∗
α(ω), (2.1)

respectively. We are interested in the following questions:
(i) When do the H-shifts of the functions ϕ and ϕ̃ form a biorthonormal system in L2(G)?
(ii) How can one construct biorthogonal bases in L2(G) from masks (2.1)?

Proposition 1. Let ϕ, ϕ̃ ∈ L2(G). The systems {ϕ( · � h) | h ∈ H} and {ϕ̃( · � h) | h ∈ H}
are biorthonormal in L2(G) if and only if∑

h∗∈H⊥

ϕ̂(ω ⊕ h∗) ̂̃ϕ(ω ⊕ h∗) = 1 for a.e. ω ∈ G∗.

Proposition 2. Let ϕ and ϕ̃ be refinable functions with masks m and m̃, respectively. If the
systems {ϕ( · � h) | h ∈ H} and {ϕ̃( · � h) | h ∈ H} are biorthonormal in L2(G), then

p−1∑
l=0

m(ω ⊕ δl) m̃(ω ⊕ δl) = 1 for all ω ∈ G∗. (2.2)

Analogs of Propositions 1 and 2 were proved in [8, Section 3] and [13, Section 1.2].
Given masks (2.1), we set m∗(ω) = m(ω)m̃(ω) and N = max{n, ñ}. Condition (2.2) is then

written in the form
p−1∑
l=0

m∗(ω ⊕ δl) = 1, ω ∈ G∗,

and is equivalent to the equalities

p−1∑
ν=0

b
(N)

l+νpN−1 b̃
(N)

l+νpN−1 = 1, 0 ≤ l ≤ pN−1 − 1, (2.3)

where b
(N)
l = m(B−Nω[l]) and b̃

(N)
l = m̃(B−Nω[l]). Let ⊕p and �p denote, respectively, addition

and subtraction of integers modulo p. The equality W ∗
α(ω)W ∗

β (ω) = W ∗
α⊕pβ(ω) implies

m∗(ω) =
pn−1∑
α=0

pñ−1∑
β=0

aαãβW ∗
α⊕pβ(ω).

Setting aα = ãβ = 0 for α ≥ pn and β ≥ pñ, we obtain

m∗(ω) =
pN−1∑
α=0

a∗αW ∗
α(ω), a∗α =

pN−1∑
γ=0

aγ ãγ�pα.
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BIORTHOGONAL WAVELETS ON VILENKIN GROUPS 107

Consider the function ϕ∗ defined by

ϕ∗(x) =
∫
G

ϕ(t ⊕ x)ϕ̃(t) dµ(t).

The Fourier transform of this function is related to those of ϕ and ϕ̃ by ϕ̂∗(ω) = ϕ̂(ω) ̂̃ϕ(ω).
Moreover, ϕ∗ is a refinable function satisfying the equation

ϕ∗(x) = p

pN−1∑
α=0

a∗αϕ∗(Ax � α), x ∈ G.

Thus, the polynomial m∗ is the mask of the function ϕ∗.
For M ⊂ U∗, let

SpM =
p−1⋃
l=0

{
B−1ω[l] + B−1(ω) | ω ∈ M

}
.

Suppose that M either coincides with one of the sets U∗
n−1, s, 1 ≤ s ≤ pn−1 − 1, or is the union of

some of these sets. Such a set M is said to be blocking for a mask m if m(ω) = 0 for all ω ∈ SpM \M .
According to this definition, if M is a blocking set for m, then M ∩ U∗

n−1, 0 = ∅. Moreover, each
mask may have only finitely many blocking sets.

Proposition 3. If one of the masks m, m̃, and m∗ has a blocking set, then the systems
{ϕ( · � h) | h ∈ H} and {ϕ̃( · � h) | h ∈ H} are not biorthonormal in L2(G).

This proposition is proved by using Theorem B (the case of m = m̃ was considered in detail
in [10]).

Let E be a compact set in G∗. The set E is said to be congruent to U∗ modulo H⊥ if µ∗(E) = 1
and, for any ω ∈ E, there exists an h∗ ∈ H⊥ such that ω ⊕ h∗ ∈ U∗. The following analog of the
well-known Cohen’s criterion (see, e.g., [13, Theorem 2.5.6]) is valid.

Theorem 1. If ϕ and ϕ̃ are refinable functions whose masks m and m̃ satisfy condition (2.2)
and ϕ̂(θ) = ̂̃ϕ(θ) = 1, then the following conditions are equivalent :

(a) the systems {ϕ( · � h) | h ∈ H} and {ϕ̃( · � h) | h ∈ H} are biorthonormal in L2(G);
(b) there exists a set E that is congruent to U∗ modulo H⊥, contains a neighborhood of zero

in G∗, and is such that

inf
j∈N

inf
ω∈E

|m(B−jω)| > 0 and inf
j∈N

inf
ω∈E

|m̃(B−jω)| > 0. (2.4)

For ϕ = ϕ̃, this theorem was proved in [10]. When constructing biorthogonal wavelet systems,
one of the main questions is whether the functions ϕ and ϕ̃ belong to the class L2. In some cases,
this question can be answered by using the joint spectral radius of special linear operators defined
for the corresponding refinement equations (see, e.g., Theorem A.6.5 in [13]).

Let r = pn−1. Recall that the joint spectral radius of r × r complex matrices A0, A1, . . . , Ap−1

is defined as

ρ̂(A0, A1, . . . , Ap−1) := lim
k→∞

max
{
‖Ad1Ad2 . . . Adk

‖1/k : dj ∈ {0, 1, . . . , p − 1}, 1 ≤ j ≤ k
}

,

where ‖ · ‖ is an arbitrary norm on C
r×r. In the case of A0 = A1 = . . . = Ap−1, ρ̂(A0, A1, . . . , Ap−1)

coincides with the spectral radius ρ(A0). The joint spectral radius of finite-dimensional linear
operators L0, L1, . . . , Lp−1 is defined as the joint spectral radius of their matrices in an arbitrary
fixed basis of the corresponding linear space.
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Given a refinement equation of the form (1.1), we set cα = paα and define r × r matrices
T0, T1, . . . , Tp−1 by

(T0)i,j = c(pi−p)�p(j−1), (T1)i,j = c(pi−p+1)�p(j−1), . . . , (Tp−1)i,j = c(pi−1)�p(j−1)

for i, j ∈ {1, 2, . . . , r}. Consider the subspace

V :=
{
u = (u1, . . . , ur)t | u1 + . . . + ur = 0

}
and denote by L0, L1, . . . , Lp−1 the restrictions to V of the linear operators defined on the whole
space C

r by the matrices T0, T1, . . . , Tp−1, respectively.
Proposition 4. If the mask m of the refinement equation (1.1) satisfies the conditions

m(θ) = 1, m(δ1) = m(δ2) = . . . = m(δp−1) = 0

and ρ̂ [m] := ρ̂(L0, L1, . . . , Lp−1) < 1, then the function ϕ defined by (1.8) satisfies equation (1.1)
and is continuous on G.

This proposition can be proved by analogy with similar results in [8, Sections 2 and 4]; it turns
out that the series in (1.8) converges uniformly on G (see also Section 5 in [9]). It is easy to see
that, under the conditions of Proposition 4, the function ϕ has compact support and belongs to the
space L2(G). Moreover, in this case

pn−1−1∑
α=0

apα =
pn−1−1∑

α=0

apα+1 = . . . =
pn−1−1∑

α=0

apα+p−1 =
1
p
.

In the graphic illustrations given below, the functions Φ and Φ̃ are defined on [0,+∞) and
related to the refinable functions ϕ and ϕ̃ by the equalities ϕ(x) = Φ[λ(x)] and ϕ̃(x) = Φ̃[λ(x)]
for almost every x ∈ G (obviously, the mapping λ : G → [0,+∞) defined in Section 1 is invertible
almost everywhere). Note also that in Examples 1–3 expansions of the form (1.8) are derived from
the formulas

ϕ̂(ω) =
∞∏

j=1

m(B−jω) and ̂̃ϕ(ω) =
∞∏

j=1

m̃(B−jω) (2.5)

by means of the Fourier transform.
Example 1. Let p = 2, n = ñ = 2, and the masks of refinable functions ϕ and ϕ̃ have the form

m(ω) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, ω ∈ U∗
2,0,

a, ω ∈ U∗
2,1,

0, ω ∈ U∗
2,2,

b, ω ∈ U∗
2,3,

and m̃(ω) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, ω ∈ U∗
2,0,

ã, ω ∈ U∗
2,1,

0, ω ∈ U∗
2,2,

b̃, ω ∈ U∗
2,3,

(2.6)

where aã + b̃b = 1. If a = 0 or ã = 0, then U∗
1,1 is a blocking set for m or m̃; otherwise, there

are no blocking sets for the masks m, m̃, and m∗. Suppose in addition that |b| < 1 and |̃b| < 1.
Then aã = 0, there are no blocking sets, and condition (2.4) holds for E = U∗. Moreover, as in the
orthogonal case considered in [4], we have

ϕ(x) =
1
2

1U (A−1x)

(
1 + a

∞∑
j=0

bjW2j+1−1(A
−1x)

)
,
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Fig. 1. The functions Φ (left) and Φ̃ (right) from Example 1.

ϕ̃ admits a similar expansion, and both functions ϕ and ϕ̃ are continuous on G. Indeed, the required
expansions for ϕ and ϕ̃ are obtained directly from (2.5) and (2.6), and it is seen from Example 4.3
in [8] and Remark 3 in [9] that ρ̂ [m] = |b| and ρ̂ [m̃] = |̃b|; therefore, Proposition 4 applies. Thus,
if aã + b̃b = 1, |b| < 1, and |̃b| < 1, then the H-shifts of the refinable functions ϕ and ϕ̃ form a
biorthonormal system in L2(G). The graphs of the functions Φ and Φ̃ for

a = −1.835358, b = −0.792570, ã = −0.332874, b̃ = −0.490884

are shown in Fig. 1.
Example 2. Let p = 2, n = 3, ñ = 2, the mask m̃ be the same as in (2.6), and the mask m

be given by
m(ω) = 1 for ω ∈ U∗

3,0, m(ω) = 1 for ω ∈ U∗
3,1,

m(ω) = b for ω ∈ U∗
3,2, m(ω) = c for ω ∈ U∗

3,3,

m(ω) = 0 for ω ∈ U∗
3,4, m(ω) = 0 for ω ∈ U∗

3,5,

m(ω) = β for ω ∈ U∗
3,6, m(ω) = γ for ω ∈ U∗

3,7.

Then, the class U∗
1,1 is a blocking set for m, m̃, and m∗ if (1) b = c = 0, (2) ã = 0, and (3) bã =

cã = 0, respectively. Moreover, U∗
2,3 is a blocking set for m and m∗ if c = 0 and cã = 0, respectively.

There are no other blocking sets for m, m̃, and m∗. Note that if ã = 0 and bc = 0, then U∗
2,3 is a

blocking set for m∗, but it is not a blocking set for m and m̃. In accordance with (2.3), suppose that

bã + βb̃ = cã + γb̃ = 1

(in particular, for b = 0 and c = 1, we have β = 1/ b̃ and γ = (1 − ã)/ b̃ ). Then blocking sets
for m, m̃, and m∗ exist only if ã = 0 or c = 0. In the case of cã = 0, condition (2.4) holds for
E = U∗

2,0 ∪ U∗
3,3 ∪ U∗

3,6. According to Examples 4.3 and 4.4 from [8], we have ρ̂ [m] = |γ| and
ρ̂ [m̃] = |̃b|. Thus, if cã = 0, |γ| < 1, and |̃b| < 1, then the H-shifts of the refinable functions ϕ
and ϕ̃ form a biorthonormal system in L2(G). The graphs of the functions Φ and Φ̃ for

b = 1.201260, c = 1.166263, β = −0.367477, γ = −0.477955,

ã = 0.758916, b̃ = −0.240408

are shown in Fig. 2.
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Fig. 2. The functions Φ (left) and Φ̃ (right) from Example 2.

Example 3. Let p = 3, n = ñ = 2, and the masks m and m̃ take the value 1 on U∗
2,0, vanish

on U∗
2,3 ∪ U∗

2,6, and be defined on the remaining part of the subgroup U∗ by the equalities

m(ω) = a and m̃(ω) = ã for ω ∈ U∗
2,1, m(ω) = α and m̃(ω) = α̃ for ω ∈ U∗

2,2,

m(ω) = b and m̃(ω) = b̃ for ω ∈ U∗
2,4, m(ω) = β and m̃(ω) = β̃ for ω ∈ U∗

2,5,

m(ω) = c and m̃(ω) = c̃ for ω ∈ U∗
2,7, m(ω) = γ and m̃(ω) = γ̃ for ω ∈ U∗

2,8,

where the parameters satisfy the condition

aã + b̃b + cc̃ = αα̃ + ββ̃ + γγ̃ = 1.

Then, in the cases aã = αα̃ = 0, aã = cc̃ = 0, and αα̃ = ββ̃ = 0, blocking sets for the mask m∗

are U∗
1,1 ∪ U∗

1,2, U∗
1,1, and U∗

1,2, respectively. Condition (2.4) holds in the following three cases:
(1) aã = 0, αα̃ = 0, and E = U∗;
(2) aã = 0, ββ̃ = 0, and E = U∗

1,0 ∪ U∗
1,1 ∪ U∗

1,5;
(3) cc̃ = 0, αα̃ = 0, and E = U∗

1,0 ∪ U∗
1,2 ∪ U∗

1,7.
Thus, if ρ̂ [m] < 1 and ρ̂ [m̃] < 1 (this condition can be verified numerically for specific parameter
values), then, in the above three cases, the H-shifts of the refinable functions ϕ and ϕ̃ form a
biorthonormal system in L2(G). Figures 3 and 4 show the real and imaginary parts of the functions
Φ and Φ̃ for the following parameter values:

a = 0.9, b = −0.295272, c = 0.403503, α = 0.9, β = 0.478760, γ = 0.144181,

ã = 0.9, b̃ = 0.037839, c̃ = 0.498566, α̃ = 0.9, β̃ = 0.270151, γ̃ = 0.420735.

Note that for these values of the parameters ρ̂ [m] < 0.57 and ρ̂ [m̃] < 0.65.

Definition 5. Let {Vj} and {Ṽj} be two MRAs in L2(G). We say that functions ψ(ν) ∈ V1

and ψ̃(ν) ∈ Ṽ1, ν = 1, . . . , p− 1, form a biorthogonal wavelet set with respect to the pair {Vj}, {Ṽj}
if ψ(ν) ⊥ Ṽ0 and ψ̃(ν) ⊥ V0 for all ν = 1, . . . , p − 1 and(

ψ(ν)( · ⊕ h[α]), ψ̃
(κ)( · ⊕ h[β])

)
= δν,κ δα,β, ν, κ ∈ {1, . . . , p − 1}, α, β ∈ Z+.

As usual, by M∗ we denote the adjoint matrix of M. The identity matrix of order p is de-
noted by Ep.
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Fig. 3. The functions Re Φ (left) and Im Φ (right) from Example 3.
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Theorem 2. Suppose that {Vj} and {Ṽj} are MRAs generated by refinable functions ϕ and ϕ̃
with masks m = m0 and m̃ = m̃0, respectively, and the systems {ϕ( · �h) | h ∈ H} and {ϕ̃( · �h) |
h ∈ H} are biorthonormal. If the matrices

M = {mν(ω + δk)}p−1
ν,k=0 and M̃ = {m̃ν(ω + δk)}p−1

ν,k=0, (2.7)

where mν , m̃ν ∈ L2(U∗), satisfy the condition

MM̃∗ = Ep (2.8)

for almost every ω ∈ U∗, then the functions ψ(ν) and ψ̃(ν), ν = 1, . . . , p−1, defined by the equalities

ψ̂(ν)(ω) = mν(B−1ω)ϕ̂(B−1ω) and ̂̃
ψ(ν)(ω) = m̃ν(B−1ω) ̂̃ϕ(B−1ω) (2.9)

form a biorthogonal wavelet set with respect to the pair {Vj}, {Ṽj}.
Analogs of Theorem 2 for the spaces L2(Rd) and L2(R+) were proved in [13, Ch. 2] and [17].

For p = 2, we can take

m1(ω) = −w1(ω)m̃0(ω ⊕ δ1) and m̃1(ω) = −w1(ω)m0(ω ⊕ δ1). (2.10)
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Applying the inverse Fourier transform and setting ψ = ψ(1) and ψ̃ = ψ̃(1), we deduce from (2.1),
(2.9), and (2.10) that

ψ(x) = 2
2n−1∑
α=0

(−1)α ãα⊕1ϕ(Ax � h[α]) and ψ̃(x) = 2
2ñ−1∑
α=0

(−1)α aα⊕1ϕ̃(Ax � h[α]).

According to (2.1), the polynomials m0 = m and m̃0 = m̃ satisfy the equalities

m0(ω) =
p−1∑
k=0

W ∗
k (ω)A0k(W ∗

p (ω)) and m̃0(ω) =
p−1∑
k=0

W ∗
k (ω)Ã0k(W ∗

p (ω)),

where

A0k(z) =
pn−1−1∑

l=0

ak+plz
l and Ã0k(z) =

pñ−1−1∑
l=0

ãk+plz
l, 0 ≤ k ≤ p − 1.

Let T be the unit circle of the complex plane C. Choose the coefficients aα and ãα in (2.1)
so that

p

p−1∑
k=0

A0k(z)Ã0k(z) = 1, z ∈ T, (2.11)

and
p−1∑
k=0

A0k(1) =
p−1∑
k=0

Ã0k(1) = 1 (2.12)

(it is easy to see that m0(θ) = m̃0(θ) = 1 in this case). Suppose that we have found algebraic
polynomials Aνk(z) and Ãνk(z), 1 ≤ ν, k ≤ p − 1, such that

p

p−1∑
k=0

Aνk(z)Ãκk(z) = δν,κ, 1 ≤ ν, κ ≤ p − 1, z ∈ T, (2.13)

and
p−1∑
k=0

Aνk(1) =
p−1∑
k=0

Ãνk(1) = 0, 1 ≤ ν ≤ p − 1. (2.14)

Then we set

mν(ω) =
p−1∑
k=0

W ∗
k (ω)Aνk(W ∗

p (ω)), m̃ν(ω) =
p−1∑
k=0

W ∗
k (ω)Ãνk(W ∗

p (ω)), 1 ≤ ν ≤ p − 1,

and form the matrices

M = {mν(ω ⊕ δk)}p−1
ν,k=0, M̃ = {m̃ν(ω ⊕ δk)}p−1

ν,k=0, D(ω) = {W ∗
ν (ω ⊕ δk)}p−1

ν,k=0.

It is easy to see that

M = A(W ∗
p (ω))D(ω) and M̃ = Ã(W ∗

p (ω))D(ω), (2.15)
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where A(z) = {Aνk(z)}p−1
ν,k=0 and Ã(z) = {Ãνk(z)}p−1

ν,k=0. Since the matrix p−1/2D(ω) is unitary, it
follows from (2.15) that

MM̃∗ = pA(W ∗
p (ω))Ã∗(W ∗

p (ω)), (2.16)

or, in more detail,

p−1∑
k=0

mν(ω ⊕ δk)m̃κ(ω ⊕ δk) = p

p−1∑
k=0

Aνk(W ∗
p (ω))Ãκk(W ∗

p (ω)), 1 ≤ ν, κ ≤ p − 1.

Formulas (2.13), (2.14), and (2.16) show that matrices (2.15) satisfy condition (2.8); moreover,
mν(θ) = 0 and m̃ν(θ) = 0 for ν = 1, . . . , p − 1.

Example 4. Let p = 3 and n = ñ = 2. We define the coefficients of the masks m = m0

and m̃ = m̃0 by means of (1.5) choosing the parameters a, α, . . . , γ̃ in such a way that the systems
{ϕ( ·�h) | h ∈ H} and {ϕ̃( ·�h) | h ∈ H} are biorthonormal in L2(G) (see Example 3). Recall that

aã + b̃b + cc̃ = αα̃ + ββ̃ + γγ̃ = 1. (2.17)

Since b0 = b̃0 = 1, it follows from (1.7) and (2.17) that

8∑
α=0

aαãα =
1
3
.

Moreover, in the case under consideration,

A00(z) = a0 + a3z + a6z
2, A01(z) = a1 + a4z + a7z

2, A02(z) = a2 + a5z + a8z
2,

Ã00(z) = ã0 + ã3z + ã6z
2, Ã01(z) = ã1 + ã4z + ã7z

2, Ã02(z) = ã2 + ã5z + ã8z
2.

Therefore, for all z ∈ T, we have

3∑
k=0

A0k(z)Ã0k(z) =
1
3

+ (a0ã3 + a1ã4 + a2ã5)z + (ã0a3 + ã1a4 + ã2a5)z + (a0ã6 + a1ã7 + a2ã8)z2

+ (ã0a6 + ã1a7 + ã2a8)z2 + (a3ã6 + a4ã7 + a5ã8)zz2 + (ã3a6 + ã4a7 + ã5a8)zz2.

Thus, condition (2.11) holds if and only if

a + α + (α̃ + d)ε3 + (ã + d̃ )ε2
3 = ã + α̃ + (α + d̃ )ε3 + (a + d)ε2

3 = 0,

a + α + (ã + d̃ )ε3 + (α̃ + d)ε2
3 = ã + α̃ + (a + d)ε3 + (α + d̃ )ε2

3 = 0,

d + d̃ + (a + ã)ε3 + (α + α̃)ε2
3 = 0,

where d = aα̃ + bβ̃ + cγ̃ and d̃ = ãα + b̃β + c̃γ (cf. the algorithms for constructing wavelets in [13,
Section 2.6; 18–20]).

Remark 1. Conditions for the functions ψ(ν) and ψ̃(ν), ν = 1, . . . , p − 1, defined by (2.9) to
generate frames or Riesz bases in L2(G) can be stated by analogy with Theorem 2.7.5 in [13]. For ex-
ample, it suffices to assume that ρ̂ [m] = ρ̂ [m̃] = 0; then, for the refinable functions ϕ and ϕ̃, expan-
sions of the form (1.8) contain only finitely many nonzero coefficients, and their Fourier transforms ϕ̂

and ̂̃ϕ have compact support (see [10, Proposition 2]). In this case, under conditions (2.2), (2.8), and

mν(θ) = 0, m̃ν(θ) = 0, ν = 1, . . . , p − 1,
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each of the systems
{
ψ

(ν)
j,h

}
and

{
ψ̃

(ν)
j,h

}
is a frame in L2(G). If the systems {ϕ( · � h) | h ∈ H} and

{ϕ̃( ·�h) | h ∈ H} are in addition biorthonormal, then the functions ψ(ν) and ψ̃(ν), ν = 1, . . . , p−1,
form a biorthogonal wavelet set with respect to the pair {Vj}, {Ṽj}, and each of the systems

{
ψ

(ν)
j,h

}
and

{
ψ̃

(ν)
j,h

}
is a Riesz basis in L2(G).

Remark 2. The graphic illustrations presented in Examples 1 and 2 are given for parameter
values maximizing the peak signal-to-noise ratio under the compression of Lena and Bridge images
according to the procedure described in [21] as applied to orthogonal dyadic wavelets.
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