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Abstract

In this paper we give a general construction of compactly supported
orthogonal p-wavelets in L2(R+) arising from scaling filters with pn

many terms. For all integer p ≥ 2 these wavelets are identified with
certain lacunary Walsh series on R+. The case where p = 2 was
studied by W.C. Lang mainly from the point of view of the wavelet
analysis on the Cantor dyadic group (the dyadic or 2-series local field).
Our approach is connected with the Walsh – Fourier transform and
the elements of M -band wavelet theory.
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1 Introduction

It is well-known that the scaling function ϕ for a system of p-wavelets with
compact support on the real line R satisfies a refinement equation of the type

ϕ(x) =
N
∑

k=0

ckϕ(px− k).

The case where p = 2 have been studied by many authors in great detail (see,
e.g., [1], [2], and references therein). The wavelet theory for integer values of
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p > 2 is also developed and have some applications in the image processing
context (see [3] for the bibliography and [4] for more recent results). In
this paper we give a general construction of compactly supported orthogonal
p-wavelets on the positive half-line.
Let p be a fixed natural number greater than 1. As usual, let R+ =

[0,+∞) and Z+ = {0, 1, . . .}. Denote by [x] the integer part of x. For x ∈ R+

and any positive integer j we set

xj = [p
jx](mod p), x−j = [p

1−jx](mod p), (1.1)

where xj, x−j ∈ {0, 1, . . . , p− 1}. It is clear that for each x ∈ R+ there exists
k = k(x) in N such that x−j = 0 for all j > k.
Consider on R+ the addition defined as follows: if z = x⊕ y, then

z =
∑

j<0

ζjp
−j−1 +

∑

j>0

ζjp
−j

with
ζj = xj + yj (mod p) (j ∈ Z \ {0}),

where ζj ∈ {0, 1, . . . , p− 1} and xj, yj are calculated by (1.1). We note that
this binary operation appears in the study of the dyadic Hardy spaces on R+

(see, e.g., [5]). It also is implicit in the book [6] where ⊕ is used for the study
of Walsh series and there applications in the image and date compression.
As usual, we write z = xª y, if z ⊕ y = x.
Let n be a positive integer. Consider a refinement equation of the type

ϕ(x) = p

pn−1
∑

α=0

aαϕ(pxª α). (1.2)

The case where p = 2 was studied by W.C. Lang [7]–[9] mainly from the
point of view of the wavelet analysis on the Cantor dyadic group (the dyadic
or 2-series local field). As noted in [9], the Cantor dyadic group is rather
different in structure than other groups for which wavelet construction have
been carried out.
Denote by 1E the characteristic function of a subset E of R+. It was

shown in [7] that the function ϕ defined by

ϕ(x) = (1/2)1[0,1)(x/2)(1 + a
∞
∑

j=0

bjw2j+1−1(x/2)), x ∈ R+, (1.3)
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where 0 < a ≤ 1, a2 + b2 = 1, and {wm(x)} is the classical Walsh system,
satisfies the equation (1.2) with p = n = 2 and

a0 = (1+a+b)/4, a1 = (1+a−b)/4, a2 = (1−a−b)/4, a3 = (1−a+b)/4.

Moreover, the corresponding wavelet is given by

ψ(x) = 2a0ϕ(2xª 1)− 2a1ϕ(2x) + 2a2ϕ(2xª 3)− 2a3ϕ(2xª 2).

Our purpose here is to extend these results for all possible p and n. In partic-
ular, a method is given to construct a system of wavelets that can be used to
decompose functions in L2(R+) which is based on decimation by an integer
p > 2. Among motivations can be point out applications of the p-series local
fields to digital signal processing (e.g., [6, Ch.12]) and the similar results in
the wavelet theory on the line R (see, e.g., [10]). Our main results, Theorems
1 and 2, may be strengthened to provide p−wavelet bases for spaces beyond
L2(R+) ( cf. [7, § 4], [9, § 4]).
For integer n ≥ 2, we denote by N0(p, n) the set of all natural numbers

m ≥ pn−1 for which in the p-ary expansion

m =
k
∑

j=0

µjp
j, µj ∈ {0, 1, . . . , p− 1}, µk 6= 0, k = k(m) ∈ Z+, (1.4)

there is no n-tuple (µj, µj+1, . . . , µj+n−1) that coincides with some of the
n-tuples

(0, 0, . . . , 0, 1), (0, 0, . . . , 0, 2), . . . , (0, 0, . . . , 0, p− 1).

Put N(p, n) = {1, 2, . . . , pn−1 − 1} ∪N0(p, n). For example:

N(2, 2) = {2j+1 − 1 | j ∈ Z+} = {1, 3, 7, 15, 31, . . .},

N(2, 3) = {1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 21, . . .},

N(3, 2) = {
k
∑

j=0

mj3
j | mj ∈ {1, 2}, k ∈ Z+} = {1, 2, 4, 5, 7, 8, 13, . . .}.

For every m ∈ N(p, n), 1 ≤ m ≤ pn − 1, we choose a (real or complex)
number bm in such a way that

bj 6= 0 and |bj|
2 + |bpn−1+j|

2 + |b2pn−1+j|
2 + . . .+ |b(p−1)pn−1+j|

2 = 1 (1.5)
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for j = 1, 2, . . . , pn−1 − 1. In the case p = n = 2 we have only one equality:
|b1|

2 + |b3|
2 = 1. Also, it is easy to see that

|b1|
2 + |b5|

2 = |b2|
2 + |b6|

2 = |b3|
2 + |b7|

2 = 1, if p = 2, n = 3

and

|b1|
2 + |b4|

2 + |b7|
2 = |b2|

2 + |b5|
2 + |b8|

2 = 1, if p = 3, n = 2.

The condition (1.5) is necessary for the orthonormality of our system {ϕ(· ª
k) | k ∈ Z+} (see assertion (b) in Theorem 2 below).
For m ∈ N(p, n), 1 ≤ m ≤ pn − 1, we set

c(i1, i2, . . . , in) = bm, if m = i1p
0+i2p

1+. . .+inp
n−1, ij ∈ {0, 1, . . . , p−1}.

Then for m ∈ N(p, n) using p-ary expansion (1.4) we write:

A(m) = c(µ0, 0, 0, . . . , 0, 0), if k(m) = 0;

A(m) = c(µ1, 0, 0, . . . , 0, 0)c(µ0, µ1, 0, . . . , 0, 0), if k(m) = 1;

. . .

A(m) = c(µk, 0, 0, . . . , 0, 0)c(µk−1, µk, 0, . . . , 0, 0) . . .

. . . c(µ0, µ1, µ2, . . . , µn−2, µn−1), if k = k(m) ≥ n− 1.

And for s ∈ {0, 1, . . . , pn − 1} we put

d(n)
s =







1, if s = 0,
bs, if s = j + lpn−1 (1 ≤ j ≤ pn−1 − 1, 0 ≤ l ≤ p− 1),
0, if s = pn − lpn−1 (1 ≤ l ≤ p− 1).

For x ∈ [0, 1), let r0(x) be given by

r0(x) =

{

1, if x ∈ [0, 1/p),
εlp, if x ∈ [lp−1, (l + 1)p−1) (l = 1, . . . , p− 1),
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where εp = exp(2πi/p). The extension of the function r0 to R+ is defined by
the equality r0(x+1) = r0(x), x ∈ R+. Then the generalized Walsh functions

{wm(x)}(m ∈ Z+) are defined by

w0(x) ≡ 1, wm(x) =
k
∏

j=0

(r0(p
jx))µj ,

where

m =
k
∑

j=0

µjp
j, µj ∈ {0, 1, . . . , p− 1}, µk 6= 0

(the classical Walsh system corresponds to the case p = 2).
For x, ω ∈ R+, let

χ(x, ω) = exp
(2πi

p

∞
∑

j=1

(xjω−j + x−jωj)
)

, (1.6)

where xj, ωj are given by (1.1). Note that χ(x,m/p
n−1) = χ(x/pn−1,m) =

wm(x/p
n−1) for all x ∈ [0, pn−1), m ∈ Z+.

Theorem 1. The function ϕ given by the formula

ϕ(x) = (1/pn−1)1[0,1)(x/p
n−1)(1 +

∑

m∈N(p,n)

A(m)wm(x/p
n−1)), x ∈ R+,

(1.7)
is a solution of the refinement equation (1.2) provided {aα} satisfy the linear
equations

pn−1
∑

α=0

aαχ(α, sp−n) = d(n)
s (0 ≤ s ≤ pn − 1). (1.8)

Moreover, the system {ϕ(· ª k) | k ∈ Z+} is orthonormal in L
2(R+).

It is easily seen that (1.7) coincides with (1.3) when p = n = 2 and
b1 = a, b3 = b.

Example 1. Suppose that b1 = b2 = . . . = bpn−1−1 = 1. Then, by (1.5),
bm = 0 for m ≥ pn−1 and hence

A(m) =

{

1, if m ∈ {1, . . . , pn−1 − 1},
0, if m ∈ N0(p, n).
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Since
pn−1−1
∑

m=0

χ(y,m) =

{

pn−1, if 0 ≤ y < 1/pn−1,
0, if 1/pn−1 ≤ y < 1

(see [6, § 1.5]), we have ϕ = 1[0,pn−1). This function satisfies the equation
(1.2) when a0 = . . . = ap−1 = 1/p and aα = 0 for α ≥ p. Note that Theorem
1 is still true for n = 1 (the Haar case), if we assume N(p, 1) = ∅.

Example 2 (cf. [9, § 5.4]). Suppose ϕ is given by (1.7) with p = 2, n = 3,
and

b1 = a, b2 = b, b3 = c, b5 = α, b6 = β, b7 = γ,

where
|a|2 + |α|2 = |b|2 + |β|2 = |c|2 + |γ|2 = 1.

Then ϕ satisfies the equation

ϕ(x) = 2
7
∑

j=0

ajϕ(2xª j)

with the coefficients

a0 =
1

8
(1 + a+ b+ c+ α + β + γ),

a1 =
1

8
(1 + a+ b+ c− α− β − γ),

a2 =
1

8
(1 + a− b− c+ α− β − γ),

a3 =
1

8
(1 + a− b− c− α + β + γ),

a4 =
1

8
(1− a+ b− c− α + β − γ),

a5 =
1

8
(1− a+ b− c+ α− β + γ),

a6 =
1

8
(1− a− b+ c− α− β + γ),

a7 =
1

8
(1− a− b+ c+ α + β − γ).
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Figure 1: The scaling functions of example 2 for a = 0.6, b = 0.4, c =
0.57, α = 0.8, β = 0.9165, γ = 0.8216 (top) and for a = 0.9, b = 0.1, c =
0.87, α = 0.4359, β = 0.9499, γ = 0.4931 (bottom).
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We give graphs of ϕ for certain values of a, b, c, α, β, γ (see Figs. 1– 2).
All plottings were generated using MatLab 6.5.

Example 3. Let ϕ be given by (1.7) with p = 3, n = 2, and

b1 = a, b2 = α, b4 = b, b5 = β, b7 = c, b8 = γ,

where
|a|2 + |b|2 + |c|2 = |α|2 + |β|2 + |γ|2 = 1.

Then ϕ satisfies the equation

ϕ(x) = 3
8
∑

j=0

ajϕ(3xª j)

with the coefficients

a0 =
1

9
(1 + a+ b+ c+ α + β + γ),

a1 =
1

9
(1 + a+ α + (b+ β)ε2

3 + (c+ γ)ε3),

a2 =
1

9
(1 + a+ α + (b+ β)ε3 + (c+ γ)ε

2
3),

a3 =
1

9
(1 + (a+ b+ c)ε2

3 + (α + β + γ)ε3),

a4 =
1

9
(1 + c+ β + (a+ γ)ε2

3 + (b+ α)ε3),

a5 =
1

9
(1 + b+ γ + (a+ β)ε2

3 + (c+ α)ε3),

a6 =
1

9
(1 + (a+ b+ c)ε3 + (α + β + γ)ε

2
3),

a7 =
1

9
(1 + b+ γ + (a+ β)ε3 + (c+ α)ε

2
3),

a8 =
1

9
(1 + c+ β + (a+ γ)ε3 + (b+ α)ε

2
3),

where ε3 = exp(2πi/3).
We note, that for all p, n

aα =
1

pn

pn−1
∑

s=0

d(n)
s χ(α, sp−n) (0 ≤ α ≤ pn − 1), (1.9)

which follows from (1.8). This relation is an analogue of the inverse discrete
Fourier transform (for the corresponding fast algorithm see, e.g., [11, p.459]).
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Figure 2: The real part (top) and imaginary part (bottom) of scaling function
ϕ from example 3 with a = 0.3, b = 0.5, c = 0.8124, α = 0.4, β = 0.7, γ =
0.5916.
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2 The Walsh – Fourier transform and mul-

tiresolution p-analysis

The Walsh – Fourier transform of a function f ∈ L1(R+) is defined by

f̃(ω) =

∫

R+

f(x)χ(x, ω)dx,

where χ(x, ω) is given by (1.6). If f ∈ L2(R+) and

Jaf(ω) =

∫ a

0

f(x)χ(x, ω)dx (a > 0),

then f̃ is defined as the limit of Jaf in L
2(R+) as a→∞.

The properties of the Walsh – Fourier transform are quite similar to
those of the classical Fourier transform (see, e.g., [6, Ch.6] or [11, Ch.9] ). In
particular, if f ∈ L2(R+), then f̃ ∈ L

2(R+) and

||f̃ ||L2(R+) = ||f ||L2(R+).

If x, y, ω ∈ R+ and x⊕ y is p-adic irrational, than

χ(x⊕ y, ω) = χ(x, ω)χ(y, ω), (2.1)

(see [6, § 1.5]). Thus, for fixed x and ω, the equality (2.1) holds for all y ∈ R+

except for countably many. It is known also, that the systems {χ(α, · )}∞α=0

and {χ(· , α)}∞α=0 are orthonormal bases in L
2[0, 1].

Accoding to [6, § 6.2] for any ϕ ∈ L2(R+) we have

∫

R+

ϕ(x)ϕ(xª k)dx =

∫

R+

|ϕ̃(ω)|2χ(k, ω)dω, k ∈ Z+. (2.2)

Let us denote by {ω} the fractional part of ω. For k ∈ Z+, we have χ(k, ω) =
χ(k, {ω}). Thus from (2.2) it follows that

∫

R+

ϕ(x)ϕ(xª k)dx =
∞
∑

l=0

∫ l+1

l

|ϕ̃(ω)|2χ(k, {ω})dω

=

∫ 1

0

(

∑

l∈Z+

|ϕ̃(ω + l)|2
)

χ(k, ω)dω.
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Therefore, a necessary and sufficient condition for a system {ϕ(·ªk) | k ∈ Z+}
to be orthonormal in L2(R+) is

∑

l∈Z+

|ϕ̃(ω + l)|2 = 1 a.e. (2.3)

Definition. A multiresolution p-analysis in L2(R+) is a sequence of
closed subspaces Vj ⊂ L2(R+)(j ∈ Z) such that the following hold:
(i) Vj ⊂ Vj+1 for all j ∈ Z.
(ii) The union

⋃

Vj is dense in L
2(R+), and

⋂

Vj = {0}.
(iii) f(·) ∈ Vj ⇐⇒ f(p ·) ∈ Vj+1 for all j ∈ Z.
(iv) f(·) ∈ V0 =⇒ f(· ⊕ k) ∈ V0 for all k ∈ Z+.
(v) There is a function ϕ ∈ L2(R+) such that {ϕ(· ª k) | k ∈ Z+} is an

orthonormal basis of V0.
The function ϕ is called a scaling function in L2(R+).

By conditions (v) and (iii) the functions ϕ1,k(x) = p1/2ϕ(px ª k) (k ∈
Z+) constitude an orthonormal basis in V1. Since V0 ⊂ V1, the scaling function
ϕ belongs to V1 and has the Fourier expansion

ϕ(x) =
∑

k∈Z+

hkp
1/2ϕ(pxª k), hk =

∫

R+

ϕ(x)ϕ1,k(x)dx.

This implies that

ϕ(x) = p
∑

α∈Z+

aαϕ(pxª α),
∑

α∈Z+

|aα|
2 < +∞, (2.4)

where aα = p−1/2hα. Under the Walsh – Fourier transform we have

ϕ̃(ω) = m0(p
−1ω)ϕ̃(p−1ω), (2.5)

where
m0(ω) =

∑

α∈Z+

aαχ(α, ω). (2.6)

When p = 2 a function ψ given by the formula

ψ(x) = 2
∑

α∈Z+

(−1)αaαϕ(2xª (α⊕ 1)) (2.7)
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is a wavelet in L2(R+), associated with the scaling function ϕ. Therefore,
the system of functions

ψj,k(x) = 2
j/2ψ(2jxª k) (j ∈ Z, k ∈ Z+)

is an orthonormal bases in L2(R+) (cf. [1, § 5.1] and [9, § 3]).

Let p > 2. It follows from (2.3) and (2.5) that

|m0(ω)|
2 + |m0(ω + 1/p)|

2 + . . .+ |m0(ω + (p− 1)/p)|
2 = 1 (2.8)

for a.e. ω ∈ [0, 1). Suppose that we have p− 1 functions

ml(ω) =
∑

α∈Z+

a(l)
α χ(α, ω),

∑

α∈Z+

|a(l)
α |

2 < +∞ (1 ≤ l ≤ p− 1),

such that
(ml(ω + k/p))

p−1
l,k=0 (2.9)

is a unitary matrix for a.e. ω ∈ [0, 1) (for the problem of unitary extension
see, e.g., [10],[12],[13]). We set

ψl(x) = p
∑

α∈Z+

a(l)
α ϕ(pxª α) (2.10)

and

W
(l)
0 = closL2(R+)span {ψl(· ª k) | k ∈ Z+} (1 ≤ l ≤ p− 1).

Let Wj be the orthogonal complement of Vj in Vj+1. Then

W0 =

p−1
⊕

l=1

W
(l)
0 , L2(R+) =

⊕

j∈Z

Wj,

where
⊕

denotes the orthogonal direct sum with the inner product of
L2(R+). Moreover, the system of functions

ψj,k,l(x) = pj/2ψl(p
jxª k) (j ∈ Z, k ∈ Z+, 1 ≤ l ≤ p− 1) (2.11)

is an orthonormal bases in L2(R+) (cf. [10], [14]).
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3 Construction of p-wavelets

Let ϕ ∈ L2(R+) satisfies the refinement equation (1.2). As before, we get

ϕ̃(ω) = m0(p
−1ω)ϕ̃(p−1ω), (3.1)

where

m0(ω) =

pn−1
∑

α=0

aαχ(α, ω). (3.2)

Suppose that

m0(0) = 1 (i.e.

pn−1
∑

α=0

aα = 1).

Put
∆(n)
s := [sp−n, (s+ 1)p−n) for s ∈ Z+.

Then m0(ω) is a constant on ∆
(n)
s for each s and m0(ω) = 1 on ∆

(n)
0 . It

follows from (3.1) that

ϕ̃(ω) =
∞
∏

j=1

m0(p
−jω), ω ∈ R+. (3.3)

We note that m0(p
−jω) = 1 as p−jω ∈ ∆

(n)
0 (so product (3.3) is finite for

every ω ∈ R+ ).
We say that a function f : R+ 7→ C is W -continuous at a point x ∈ R+,

if for each ε > 0 there exists δ > 0 such that |f(x ⊕ y) − f(x)| < ε for
0 < y < δ. It is known that χ(α, · )(α ∈ Z+) are W -continuous functions.
By (3.2) and (3.3), the same is true for m0 and ϕ̃. Moreover, m0 and ϕ̃ are
uniformly W -continuous in [0,1) (cf. [6, § 2.3], [11, § 9.2]).
The collection {[0, p−j)| j ∈ Z} is a fundamental system of neighborhoods

of zero in the W -topology on R+ (cf. [6, § 1.2]).
Suppose that E is a W -compact set in R+. The notation E ≡ [0, 1)

(mod Z+) means that for each x ∈ [0, 1) there exists k ∈ Z+ such that
x⊕ k ∈ E. Denote by µ the Lebesgue measure on R+.
We can now state the analogue of Cohen’s theorem (cf. [1, § 6.3] and [2,

§ 9.5]):

Theorem 2. Let

m0(ω) =

pn−1
∑

α=0

aαχ(α, ω)
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be a polynomial satisfying the following conditions:

(a) m0(0) = 1.
(b)

∑p−1
j=0 |m0(sp

−n ⊕ jp−1)|2 = 1 for s = 0, 1, . . . , pn−1 − 1.
(c) There exists a W -compact set E such that int (E) 3 0, µ(E) = 1, E ≡

[0, 1)(mod Z+), and
inf
j∈N

inf
ω∈E

|m0(p
−jω)| > 0. (3.4)

If the Walsh – Fourier transform of ϕ ∈ L2(R+) can be written as

ϕ̃(ω) =
∞
∏

j=1

m0(p
−jω), (3.5)

then ϕ is a scaling function in L2(R+).

Remark 1. Assertion (b) of Theorem 2 is nothing but the statement
that for our polynomial m0 the equality (2.8) is true.

Remark 2. It is easy to check that m0 with the coefficients {aα} from
(1.8) satisfies all conditions of Theorem 2. For example, since

m0(ω) 6= 0 for all ω ∈ [0, 1/p),

condition (c) holds for E = [0, 1). Therefore, the function ϕ given by (1.7) is
a scaling function in L2(R+).

Theorems 1 and 2 tell us a general procedure to design p-wavelets in
L2(R+) :

1. Choose a set of numbers {bm : m ∈ N(p, n), 1 ≤ m ≤ pn − 1} so that
(1.5) is true.
2. Compute {aα} by (1.9).
3. With m0 defined by (3.2) find

ml(ω) =
∑

α∈Z+

a(l)
α χ(α, ω), (1 ≤ l ≤ p− 1),

such that (ml(ω + k/p))
p−1
l,k=0 is a unitary matrix.

4. Define ψ1, . . . , ψp−1 by (2.10).

Remark 3. For wavelet construction the condition bj 6= 0 in (1.5) can
be replaced by assertion (c) of Theorem 2.

In connection with Remark 3 we give the following
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Example 4. Let p = 2, n = 3 and

m0(ω) =

{

1, if x ∈ [0, 1/4) ∪ [3/8, 1/2) ∪ [3/4, 7/8),
0, if x ∈ [1/4, 3/8) ∪ [1/2, 3/4) ∪ [7/8, 1).

Then from (3.3) we see that ϕ̃ = 1E where E = [0, 1/2)∪ [3/4, 1)∪ [3/2, 7/4).
Under the inverse Walsh – Fourier transform we obtain

ϕ(x) =
1

2
1[0,2)(x) +

1

4
1[0,4)(x)[w3(x/4) + w6(x/4)]

(see also Example 2 for a = c = 1, b = 0). By Theorem 2, this function
generate a multiresolution 2-analysis in L2(R+).

4 Proofs

To prove Theorems 1 and 2, we need the following lemma (cf. [1, § 6.3] and
[2, § 9.5]):

Lemma 1. Under the conditions of Theorem 2 the system {ϕ(·ªk) | k ∈
Z+} is orthonormal in L

2(R+).

Proof. For l ∈ N let

µ[l](ω) =
l
∏

j=1

m0(ω/p
j)1E(ω/p

l), ω ∈ R+.

Since 0 ∈ int (E) and m0(ω) = 1 on ∆
(n)
0 , we obtain from (3.5)

lim
l→∞

µ[l](ω) = ϕ̃(ω), ω ∈ R+. (4.1)

Also, by (a) and (c), there exists a number j0 such that

m0(ω/p
j) = 1 for j > j0, ω ∈ E.

Thus,

ϕ̃(ω) =

j0
∏

j=1

m0(p
−jω), ω ∈ E.

By (3.4), there is a constant c1 > 0 such that

|m0(ω/p
j)| ≥ c1 for j ∈ N, ω ∈ E,
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and so
c−j01 |ϕ̃(ω)| ≥ 1E(ω), ω ∈ R+.

Therefore

|µ[l](ω)| =
l
∏

j=1

|m0(ω/p
j)|1E(ω/p

l) ≤ c−j01

l
∏

j=1

|m0(ω/p
j)||ϕ̃(ω/pl)|

which by (3.5) yields

|µ[l](ω)| ≤ c−j01 |ϕ̃(ω)| for l ∈ N, ω ∈ R+. (4.2)

Now, for l ∈ N we define

Il(s) :=

∫

R+

|µ[l](ω)|2χ(s, ω)dω, s ∈ Z+.

Setting El := {ω ∈ R+| p
−lω ∈ E} and ζ = p−lω, we have

Il(s) =
∫

El

l
∏

j=1

|m0(ω/p
j)|2χ(s, ω)dω =

= pl
∫

E
|m0(ζ)|

2
l−1
∏

j=1

|m0(p
jζ)|2χ(s, plζ)dζ,

(4.3)

where the last integrand is 1-periodic.
Using the assumption E ≡ [0, 1)(mod Z+) and changing the variable we

get from (4.3)

Il(s) = pl−1

∫ 1

0

p−1
∑

0

|m0(ξ/p+ i/p)|
2

l−1
∏

j=1

|m0(p
j−1ξ)|2χ(s, pl−1ξ)dξ.

Therefore, in view of Remark 1,

Il(s) = pl−1

∫ 1

0

l−2
∏

j=0

|m0(p
jξ)|2χ(s, pl−1ξ)dξ

which by (4.3) becomes
Il(s) = Il−1(s).
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Since

I1(s) = p

∫ 1

0

|m0(ξ)|
2χ(s, pξ)dξ =

∫ 1

0

χ(s, ξ)dξ = δ0,s,

where δ0,s is the Kronecker delta, we get

Il(s) = δ0,s (l ∈ N, s ∈ Z+). (4.4)

In particular, for all l ∈ N

Il(0) =

∫

R+

|µ[l](ω)|2dω = 1.

By (4.1) and Fatou’s lemma we then obtain

∫

R+

|ϕ̃(ω)|2dω ≤ 1.

Thus, from (4.1) and (4.2) by Lebesque’s dominated convergence theorem
it follows that

∫

R+

|ϕ̃(ω)|2χ(s, ω)dω = lim
l→∞

Il(s).

Hence by (2.2) and (4.4),

∫

R+

ϕ(x)ϕ(xª s)dx = δ0,s, s ∈ Z+.

Proof of Theorem 1. Put X1−n = 1[0,1/pn−1). For any x ∈ R+ we have

∫

R+

X1−n(ω ªm/pn−1)χ(x, ω)dω = χ(x,m/pn−1)

∫ 1/pn−1

0

χ(x, ω)dω

= (1/pn−1)1[0,1)(x/p
n−1)χ(x,m/pn−1) = (1/pn−1)1[0,1)(x/p

n−1)wm(x/p
n−1).

Consequently, taking the Walsh – Fourier transform of both sides of (1.7)
gives

ϕ̃(ω) = X1−n(ω) +
∑

m∈N(p,n)

A(m)X1−n(ω ªm/pn−1). (4.5)
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If ζ ∈ [0, 1/pn−1) and m ∈ N(p, n), then clearly

ζ ⊕
m

pn−1
= ζ +

m

pn−1

since [pn+jζ](mod p) = 0 for all negative intergers j. Hence setting ζ = ω ª
m/pn−1, we see from (4.5) that

ϕ̃(ω) =







1, if ω ∈ ∆
(n−1)
0 ,

A(m), if ω ∈ ∆
(n−1)
m ,

0 otherwise,

(4.6)

where m ∈ N(p, n).
Now, let the polynomial

m0(ω) =

pn−1
∑

α=0

aαχ(α, ω)

satisfy the condition (1.8), that is, m0(sp
−n) = d

(n)
s for 0 ≤ s ≤ pn−1. Then,

by the definition of {A(m)}, from (4.6) we have

ϕ̃(ω) =
∞
∏

j=1

m0(p
−jω)

and so
ϕ̃(ω) = m0(p

−1ω)ϕ̃(p−1ω)

which gives (1.2). By Lemma 1 and Remark 2 the system {ϕ(·ªk) | k ∈ Z+}
is orthonormal in L2(R+).

For integer m let Em(R+) denotes the collection of all functions f on
R+ which are constant on [sp

−m, (s+1)p−m) for each s ∈ Z+. Further, we
set

Ẽm(R+) := {f : f is W -continuous and f̃ ∈ Em(R+)}

and

E(R+) :=
∞
⋃

m=1

Em(R+), Ẽ(R+) :=
∞
⋃

m=1

Ẽm(R+).

The following properties are true (see [6, § 6.2 and § 10.5]):
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1. E(R+) and Ẽ(R+) are dense in L
q(R+) for 1 ≤ q ≤ ∞.

2. If f ∈ L1(R+) ∩ Em(R+), then supp f̃ ⊂ [0, p
m].

3. If f ∈ L1(R+) ∩ Ẽm(R+), then supp f ⊂ [0, p
m].

For ϕ ∈ L2(R+) we put

ϕj,k(x) = pj/2ϕ(pjxª k) (j ∈ Z, k ∈ Z+)

and
Vj = closL2(R+)span {ϕj,k| k ∈ Z+} (j ∈ Z). (4.7)

Let Pj be the orthogonal projection of L
2(R+) to Vj. Also, we denote the

norm in L2(R+) briefly by || · ||.

As an analogue of Proposition 5.3.1 in [1] (cf. Theorem 2.2 in [12]), we
have:

Lemma 2. If {ϕ0,k} is an orthogonal basis in V0, then
⋂

Vj = {0}.

Proof. Let f ∈
⋂

Vj. Given an ε > 0 we choose u ∈ L1(R+) ∩ Ẽ(R+)
such that ||f − u|| < ε. Then

||f − Pju|| ≤ ||Pj(f − u)|| ≤ ||f − u|| < ε

and so
||f || ≤ ||Pju||+ ε (4.8)

for every j ∈ Z.
Now, choose R > 0 so that suppu ⊂ [0, R). Then

(Pju, ϕj,k) = (u, ϕj,k) = pj/2
∫ R

0

u(x)ϕ(pjxª k)dx.

Hence, by the Cauchy – Schwarz inequality,

||Pju||
2 =

∑

k∈Z+

|(Pju, ϕj,k)|
2 ≤ ||u||2

∑

k∈Z+

pj
∫ R

0

|ϕ(pjxª k)|2dx.

Therefore, if j is chosen small enough so that Rpj < 1, then

||Pju||
2 ≤ ||u||2

∫

SR,j

|ϕ(x)|2dx = ||u||2
∫

R+

1SR,j
(x)|ϕ(x)|2dx, (4.9)
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where SR,j :=
⋃

k∈Z+
{y ª k | y ∈ [0, Rpj)}. It is easy to check that

lim
j→−∞

1SR,j
(x) = 0 for all x /∈ Z+.

Thus by the dominated convergence theorem from (4.9) we get

lim
j→−∞

||Pju|| = 0.

In view of (4.8), this implies that ||f || ≤ ε, and thus
⋂

Vj = {0}.

Proof of Theorem 2. Let a function ϕ be defined by Walsh-Fourier trans-
form (3.5) and the spaces Vj (j ∈ Z+) are given by (4.7). As before, since
ϕ̃(ω) = m0(ω/p)ϕ̃(ω/p), we have

ϕ(x) = p

pn−1
∑

α=0

aαϕ(pxª α),

which implies that Vj ⊂ Vj+1. On account of Lemma 1, we see that conditions
(i) and (iii)–(v) of multiresolution p-analysis are satisfied. By Lemma 2 we
have

⋂

Vj = {0}. Therefore, it remains to confirm that

⋃

Vj = L2(R+)

or, equvalently,

(
⋃

Vj)
⊥ = {0}. (4.10)

Let f ∈ (
⋃

Vj)
⊥. Given an ε > 0 we choose u ∈ L1(R+) ∩ E(R+) such

that ||f − u|| < ε. Then for any j ∈ Z+ we have

||Pjf ||
2 = (Pjf, Pjf) = (f, Pjf) = 0

and so
||Pju|| = ||Pj(f − u)|| ≤ ||f − u|| < ε. (4.11)

Choose a positive integer j so large that supp ũ ⊂ [0, pj) and p−jω ∈
[0, p−n+1) for all ω ∈ supp ũ. Then we put g(ω) = ũ(ω)ϕ̃(p−jω). As the
system {p−j/2χ(p−jk, ·)}∞k=0 is an orthonormal bases in L

2[0, pj], we have

∑

k∈Z+

|ck(g)|
2 = p−j

∫ pj

0

|g(ω)|2dω, (4.12)
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where

ck(g) = p−j/2
∫ pj

0

g(ω)χ(p−jk, ω)dω.

Observing that

∫

R+

ϕ(pjxª k)χ(x, ω)dx = p−jϕ̃(p−jω)χ(p−jk, ω),

by the Plancherel relation we get

p−j/2(u, ϕj,k) = p−j
∫ pj

0

g(ω)χ(p−jk, ω)dω.

Thus, in view of (4.12),

||Pju||
2 =

∑

k∈Z+

|(u, ϕj,k)|
2 =

∫ pj

0

|ũ(ω)ϕ̃(p−jω)|2dω. (4.13)

Since m0(ω) = 1 on ∆
(n)
0 and since p−jω ∈ [0, p−n+1) for ω ∈ supp ũ, it

follows from (3.5) that ϕ̃(p−jω) = 1 for all ω ∈ supp ũ. Furthermore, because
supp ũ ⊂ [0, pj), we obtain from (4.11) and (4.13)

ε > ||Pju|| = ||ũ|| = ||u||.

Consequently, we conclude

||f || < ε+ ||u|| < 2ε,

which implies (4.10).
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