Orthogonal p-wavelets on \mathbf{R}_{+}

Yu.A. Farkov

Abstract

In this paper we give a general construction of compactly supported orthogonal p-wavelets in $L^{2}\left(\mathbf{R}_{+}\right)$arising from scaling filters with p^{n} many terms. For all integer $p \geq 2$ these wavelets are identified with certain lacunary Walsh series on \mathbf{R}_{+}. The case where $p=2$ was studied by W.C. Lang mainly from the point of view of the wavelet analysis on the Cantor dyadic group (the dyadic or 2-series local field). Our approach is connected with the Walsh - Fourier transform and the elements of M-band wavelet theory.

Keywords: compactly supported p-wavelets, M-band wavelet transform, Walsh functions, Walsh - Fourier transform, p-series local field, signal processing.

AMS Subject Classification: 42A38, 42A55, 42C15, 42C40, 43A70.

1 Introduction

It is well-known that the scaling function φ for a system of p-wavelets with compact support on the real line \mathbf{R} satisfies a refinement equation of the type

$$
\varphi(x)=\sum_{k=0}^{N} c_{k} \varphi(p x-k)
$$

The case where $p=2$ have been studied by many authors in great detail (see, e.g., [1], [2], and references therein). The wavelet theory for integer values of

[^0]$p>2$ is also developed and have some applications in the image processing context (see [3] for the bibliography and [4] for more recent results). In this paper we give a general construction of compactly supported orthogonal p-wavelets on the positive half-line.

Let p be a fixed natural number greater than 1 . As usual, let $\mathbf{R}_{+}=$ $[0,+\infty)$ and $\mathbf{Z}_{+}=\{0,1, \ldots\}$. Denote by $[x]$ the integer part of x. For $x \in \mathbf{R}_{+}$ and any positive integer j we set

$$
\begin{equation*}
x_{j}=\left[p^{j} x\right](\bmod p), \quad x_{-j}=\left[p^{1-j} x\right](\bmod p), \tag{1.1}
\end{equation*}
$$

where $x_{j}, x_{-j} \in\{0,1, \ldots, p-1\}$. It is clear that for each $x \in \mathbf{R}_{+}$there exists $k=k(x)$ in \mathbf{N} such that $x_{-j}=0$ for all $j>k$.

Consider on \mathbf{R}_{+}the addition defined as follows: if $z=x \oplus y$, then

$$
z=\sum_{j<0} \zeta_{j} p^{-j-1}+\sum_{j>0} \zeta_{j} p^{-j}
$$

with

$$
\zeta_{j}=x_{j}+y_{j}(\bmod p) \quad(j \in \mathbf{Z} \backslash\{0\})
$$

where $\zeta_{j} \in\{0,1, \ldots, p-1\}$ and x_{j}, y_{j} are calculated by (1.1). We note that this binary operation appears in the study of the dyadic Hardy spaces on \mathbf{R}_{+} (see, e.g., [5]). It also is implicit in the book [6] where \oplus is used for the study of Walsh series and there applications in the image and date compression.

As usual, we write $z=x \ominus y$, if $z \oplus y=x$.
Let n be a positive integer. Consider a refinement equation of the type

$$
\begin{equation*}
\varphi(x)=p \sum_{\alpha=0}^{p^{n}-1} a_{\alpha} \varphi(p x \ominus \alpha) \tag{1.2}
\end{equation*}
$$

The case where $p=2$ was studied by W.C. Lang [7]-[9] mainly from the point of view of the wavelet analysis on the Cantor dyadic group (the dyadic or 2 -series local field). As noted in [9], the Cantor dyadic group is rather different in structure than other groups for which wavelet construction have been carried out.

Denote by $\mathbf{1}_{E}$ the characteristic function of a subset E of \mathbf{R}_{+}. It was shown in [7] that the function φ defined by

$$
\begin{equation*}
\varphi(x)=(1 / 2) \mathbf{1}_{[0,1)}(x / 2)\left(1+a \sum_{j=0}^{\infty} b^{j} w_{2^{j+1}-1}(x / 2)\right), \quad x \in \mathbf{R}_{+}, \tag{1.3}
\end{equation*}
$$

where $0<a \leq 1, a^{2}+b^{2}=1$, and $\left\{w_{m}(x)\right\}$ is the classical Walsh system, satisfies the equation (1.2) with $p=n=2$ and
$a_{0}=(1+a+b) / 4, \quad a_{1}=(1+a-b) / 4, \quad a_{2}=(1-a-b) / 4, \quad a_{3}=(1-a+b) / 4$.
Moreover, the corresponding wavelet is given by

$$
\psi(x)=2 a_{0} \varphi(2 x \ominus 1)-2 a_{1} \varphi(2 x)+2 a_{2} \varphi(2 x \ominus 3)-2 a_{3} \varphi(2 x \ominus 2) .
$$

Our purpose here is to extend these results for all possible p and n. In particular, a method is given to construct a system of wavelets that can be used to decompose functions in $L^{2}\left(\mathbf{R}_{+}\right)$which is based on decimation by an integer $p>2$. Among motivations can be point out applications of the p-series local fields to digital signal processing (e.g., [6, Ch.12]) and the similar results in the wavelet theory on the line \mathbf{R} (see, e.g., [10]). Our main results, Theorems 1 and 2 , may be strengthened to provide p-wavelet bases for spaces beyond $L^{2}\left(\mathbf{R}_{+}\right)($cf. $[7, \S 4],[9, \S 4])$.

For integer $n \geq 2$, we denote by $\mathbf{N}_{0}(p, n)$ the set of all natural numbers $m \geq p^{n-1}$ for which in the p-ary expansion

$$
\begin{equation*}
m=\sum_{j=0}^{k} \mu_{j} p^{j}, \quad \mu_{j} \in\{0,1, \ldots, p-1\}, \quad \mu_{k} \neq 0, \quad k=k(m) \in \mathbf{Z}_{+}, \tag{1.4}
\end{equation*}
$$

there is no n-tuple $\left(\mu_{j}, \mu_{j+1}, \ldots, \mu_{j+n-1}\right)$ that coincides with some of the n-tuples

$$
(0,0, \ldots, 0,1),(0,0, \ldots, 0,2), \ldots,(0,0, \ldots, 0, p-1)
$$

Put $\mathbf{N}(p, n)=\left\{1,2, \ldots, p^{n-1}-1\right\} \cup \mathbf{N}_{0}(p, n)$. For example:

$$
\begin{gathered}
\mathbf{N}(2,2)=\left\{2^{j+1}-1 \mid j \in \mathbf{Z}_{+}\right\}=\{1,3,7,15,31, \ldots\}, \\
\mathbf{N}(2,3)=\{1,2,3,5,6,7,10,11,13,14,15,21, \ldots\}, \\
\mathbf{N}(3,2)=\left\{\sum_{j=0}^{k} m_{j} 3^{j} \mid m_{j} \in\{1,2\}, k \in \mathbf{Z}_{+}\right\}=\{1,2,4,5,7,8,13, \ldots\} .
\end{gathered}
$$

For every $m \in \mathbf{N}(p, n), 1 \leq m \leq p^{n}-1$, we choose a (real or complex) number b_{m} in such a way that

$$
\begin{equation*}
b_{j} \neq 0 \quad \text { and } \quad\left|b_{j}\right|^{2}+\left|b_{p^{n-1}+j}\right|^{2}+\left|b_{2 p^{n-1}+j}\right|^{2}+\ldots+\left|b_{(p-1) p^{n-1}+j}\right|^{2}=1 \tag{1.5}
\end{equation*}
$$

for $j=1,2, \ldots, p^{n-1}-1$. In the case $p=n=2$ we have only one equality: $\left|b_{1}\right|^{2}+\left|b_{3}\right|^{2}=1$. Also, it is easy to see that

$$
\left|b_{1}\right|^{2}+\left|b_{5}\right|^{2}=\left|b_{2}\right|^{2}+\left|b_{6}\right|^{2}=\left|b_{3}\right|^{2}+\left|b_{7}\right|^{2}=1, \quad \text { if } \quad p=2, n=3
$$

and

$$
\left|b_{1}\right|^{2}+\left|b_{4}\right|^{2}+\left|b_{7}\right|^{2}=\left|b_{2}\right|^{2}+\left|b_{5}\right|^{2}+\left|b_{8}\right|^{2}=1, \quad \text { if } \quad p=3, n=2 .
$$

The condition (1.5) is necessary for the orthonormality of our system $\{\varphi(\cdot \ominus$ $\left.k) \mid k \in \mathbf{Z}_{+}\right\}$(see assertion (b) in Theorem 2 below).

For $m \in \mathbf{N}(p, n), 1 \leq m \leq p^{n}-1$, we set
$c\left(i_{1}, i_{2}, \ldots, i_{n}\right)=b_{m}, \quad$ if $\quad m=i_{1} p^{0}+i_{2} p^{1}+\ldots+i_{n} p^{n-1}, i_{j} \in\{0,1, \ldots, p-1\}$.
Then for $m \in \mathbf{N}(p, n)$ using p-ary expansion (1.4) we write:

$$
A(m)=c\left(\mu_{0}, 0,0, \ldots, 0,0\right), \quad \text { if } \quad k(m)=0 ;
$$

$$
A(m)=c\left(\mu_{1}, 0,0, \ldots, 0,0\right) c\left(\mu_{0}, \mu_{1}, 0, \ldots, 0,0\right), \quad \text { if } \quad k(m)=1 ;
$$

$$
\begin{aligned}
& A(m)=c\left(\mu_{k}, 0,0, \ldots, 0,0\right) c\left(\mu_{k-1}, \mu_{k}, 0, \ldots, 0,0\right) \ldots \\
& \quad \ldots c\left(\mu_{0}, \mu_{1}, \mu_{2}, \ldots, \mu_{n-2}, \mu_{n-1}\right), \quad \text { if } \quad k=k(m) \geq n-1 .
\end{aligned}
$$

And for $s \in\left\{0,1, \ldots, p^{n}-1\right\}$ we put

$$
d_{s}^{(n)}=\left\{\begin{array}{lll}
1, & \text { if } \quad s=0 \\
b_{s}, & \text { if } \quad s=j+l p^{n-1}\left(1 \leq j \leq p^{n-1}-1,0 \leq l \leq p-1\right) \\
0, & \text { if } \quad s=p^{n}-l p^{n-1}(1 \leq l \leq p-1)
\end{array}\right.
$$

For $x \in[0,1)$, let $r_{0}(x)$ be given by

$$
r_{0}(x)=\left\{\begin{array}{lll}
1, & \text { if } & x \in[0,1 / p), \\
\varepsilon_{p}^{l}, & \text { if } & x \in\left[l p^{-1},(l+1) p^{-1}\right)(l=1, \ldots, p-1),
\end{array}\right.
$$

where $\varepsilon_{p}=\exp (2 \pi i / p)$. The extension of the function r_{0} to \mathbf{R}_{+}is defined by the equality $r_{0}(x+1)=r_{0}(x), x \in \mathbf{R}_{+}$. Then the generalized Walsh functions $\left\{w_{m}(x)\right\}\left(m \in \mathbf{Z}_{+}\right)$are defined by

$$
w_{0}(x) \equiv 1, \quad w_{m}(x)=\prod_{j=0}^{k}\left(r_{0}\left(p^{j} x\right)\right)^{\mu_{j}},
$$

where

$$
m=\sum_{j=0}^{k} \mu_{j} p^{j}, \quad \mu_{j} \in\{0,1, \ldots, p-1\}, \quad \mu_{k} \neq 0
$$

(the classical Walsh system corresponds to the case $p=2$).
For $x, \omega \in \mathbf{R}_{+}$, let

$$
\begin{equation*}
\chi(x, \omega)=\exp \left(\frac{2 \pi i}{p} \sum_{j=1}^{\infty}\left(x_{j} \omega_{-j}+x_{-j} \omega_{j}\right)\right) \tag{1.6}
\end{equation*}
$$

where x_{j}, ω_{j} are given by (1.1). Note that $\chi\left(x, m / p^{n-1}\right)=\chi\left(x / p^{n-1}, m\right)=$ $w_{m}\left(x / p^{n-1}\right)$ for all $x \in\left[0, p^{n-1}\right), m \in \mathbf{Z}_{+}$.

Theorem 1. The function φ given by the formula

$$
\begin{equation*}
\varphi(x)=\left(1 / p^{n-1}\right) \mathbf{1}_{[0,1)}\left(x / p^{n-1}\right)\left(1+\sum_{m \in \mathbf{N}(p, n)} A(m) w_{m}\left(x / p^{n-1}\right)\right), \quad x \in \mathbf{R}_{+}, \tag{1.7}
\end{equation*}
$$

is a solution of the refinement equation (1.2) provided $\left\{a_{\alpha}\right\}$ satisfy the linear equations

$$
\begin{equation*}
\sum_{\alpha=0}^{p^{n}-1} a_{\alpha} \overline{\chi\left(\alpha, s p^{-n}\right)}=d_{s}^{(n)} \quad\left(0 \leq s \leq p^{n}-1\right) \tag{1.8}
\end{equation*}
$$

Moreover, the system $\left\{\varphi(\cdot \ominus k) \mid k \in \mathbf{Z}_{+}\right\}$is orthonormal in $L^{2}\left(\mathbf{R}_{+}\right)$.
It is easily seen that (1.7) coincides with (1.3) when $p=n=2$ and $b_{1}=a, b_{3}=b$.

Example 1. Suppose that $b_{1}=b_{2}=\ldots=b_{p^{n-1}-1}=1$. Then, by (1.5), $b_{m}=0$ for $m \geq p^{n-1}$ and hence

$$
A(m)=\left\{\begin{array}{lll}
1, & \text { if } & m \in\left\{1, \ldots, p^{n-1}-1\right\} \\
0, & \text { if } & m \in \mathbf{N}_{0}(p, n)
\end{array}\right.
$$

Since

$$
\sum_{m=0}^{p^{n-1}-1} \chi(y, m)=\left\{\begin{array}{ccc}
p^{n-1}, & \text { if } \quad 0 \leq y<1 / p^{n-1} \\
0, & \text { if } 1 / p^{n-1} \leq y<1
\end{array}\right.
$$

(see $[6, \S 1.5]$), we have $\varphi=\mathbf{1}_{\left[0, p^{n-1}\right)}$. This function satisfies the equation (1.2) when $a_{0}=\ldots=a_{p-1}=1 / p$ and $a_{\alpha}=0$ for $\alpha \geq p$. Note that Theorem 1 is still true for $n=1$ (the Haar case), if we assume $\mathbf{N}(p, 1)=\emptyset$.

Example 2 (cf. [9, § 5.4]). Suppose φ is given by (1.7) with $p=2, n=3$, and

$$
b_{1}=a, b_{2}=b, b_{3}=c, b_{5}=\alpha, b_{6}=\beta, b_{7}=\gamma
$$

where

$$
|a|^{2}+|\alpha|^{2}=|b|^{2}+|\beta|^{2}=|c|^{2}+|\gamma|^{2}=1 .
$$

Then φ satisfies the equation

$$
\varphi(x)=2 \sum_{j=0}^{7} a_{j} \varphi(2 x \ominus j)
$$

with the coefficients

$$
\begin{aligned}
& a_{0}=\frac{1}{8}(1+a+b+c+\alpha+\beta+\gamma), \\
& a_{1}=\frac{1}{8}(1+a+b+c-\alpha-\beta-\gamma), \\
& a_{2}=\frac{1}{8}(1+a-b-c+\alpha-\beta-\gamma), \\
& a_{3}=\frac{1}{8}(1+a-b-c-\alpha+\beta+\gamma), \\
& a_{4}=\frac{1}{8}(1-a+b-c-\alpha+\beta-\gamma), \\
& a_{5}=\frac{1}{8}(1-a+b-c+\alpha-\beta+\gamma), \\
& a_{6}=\frac{1}{8}(1-a-b+c-\alpha-\beta+\gamma), \\
& a_{7}=\frac{1}{8}(1-a-b+c+\alpha+\beta-\gamma) .
\end{aligned}
$$

Figure 1: The scaling functions of example 2 for $a=0.6, b=0.4, c=$ $0.57, \alpha=0.8, \beta=0.9165, \gamma=0.8216$ (top) and for $a=0.9, b=0.1, c=$ $0.87, \alpha=0.4359, \beta=0.9499, \gamma=0.4931$ (bottom).

We give graphs of φ for certain values of $a, b, c, \alpha, \beta, \gamma$ (see Figs. 1-2). All plottings were generated using MatLab 6.5.

Example 3. Let φ be given by (1.7) with $p=3, n=2$, and

$$
b_{1}=a, b_{2}=\alpha, b_{4}=b, b_{5}=\beta, b_{7}=c, b_{8}=\gamma,
$$

where

$$
|a|^{2}+|b|^{2}+|c|^{2}=|\alpha|^{2}+|\beta|^{2}+|\gamma|^{2}=1 .
$$

Then φ satisfies the equation

$$
\varphi(x)=3 \sum_{j=0}^{8} a_{j} \varphi(3 x \ominus j)
$$

with the coefficients

$$
\begin{gathered}
a_{0}=\frac{1}{9}(1+a+b+c+\alpha+\beta+\gamma), \\
a_{1}=\frac{1}{9}\left(1+a+\alpha+(b+\beta) \varepsilon_{3}^{2}+(c+\gamma) \varepsilon_{3}\right), \\
a_{2}=\frac{1}{9}\left(1+a+\alpha+(b+\beta) \varepsilon_{3}+(c+\gamma) \varepsilon_{3}^{2}\right), \\
a_{3}=\frac{1}{9}\left(1+(a+b+c) \varepsilon_{3}^{2}+(\alpha+\beta+\gamma) \varepsilon_{3}\right), \\
a_{4}=\frac{1}{9}\left(1+c+\beta+(a+\gamma) \varepsilon_{3}^{2}+(b+\alpha) \varepsilon_{3}\right), \\
a_{5}=\frac{1}{9}\left(1+b+\gamma+(a+\beta) \varepsilon_{3}^{2}+(c+\alpha) \varepsilon_{3}\right), \\
a_{6}=\frac{1}{9}\left(1+(a+b+c) \varepsilon_{3}+(\alpha+\beta+\gamma) \varepsilon_{3}^{2}\right), \\
a_{7}=\frac{1}{9}\left(1+b+\gamma+(a+\beta) \varepsilon_{3}+(c+\alpha) \varepsilon_{3}^{2}\right), \\
a_{8}=\frac{1}{9}\left(1+c+\beta+(a+\gamma) \varepsilon_{3}+(b+\alpha) \varepsilon_{3}^{2}\right),
\end{gathered}
$$

where $\varepsilon_{3}=\exp (2 \pi i / 3)$.
We note, that for all p, n

$$
\begin{equation*}
a_{\alpha}=\frac{1}{p^{n}} \sum_{s=0}^{p^{n}-1} d_{s}^{(n)} \chi\left(\alpha, s p^{-n}\right) \quad\left(0 \leq \alpha \leq p^{n}-1\right) \tag{1.9}
\end{equation*}
$$

which follows from (1.8). This relation is an analogue of the inverse discrete Fourier transform (for the corresponding fast algorithm see, e.g., [11, p.459]).

Figure 2: The real part (top) and imaginary part (bottom) of scaling function φ from example 3 with $a=0.3, b=0.5, c=0.8124, \alpha=0.4, \beta=0.7, \gamma=$ 0.5916 .

2 The Walsh - Fourier transform and multiresolution p-analysis

The Walsh - Fourier transform of a function $f \in L^{1}\left(\mathbf{R}_{+}\right)$is defined by

$$
\tilde{f}(\omega)=\int_{\mathbf{R}_{+}} f(x) \overline{\chi(x, \omega)} d x
$$

where $\chi(x, \omega)$ is given by (1.6). If $f \in L^{2}\left(\mathbf{R}_{+}\right)$and

$$
J_{a} f(\omega)=\int_{0}^{a} f(x) \overline{\chi(x, \omega)} d x \quad(a>0)
$$

then \tilde{f} is defined as the limit of $J_{a} f$ in $L^{2}\left(\mathbf{R}_{+}\right)$as $a \rightarrow \infty$.
The properties of the Walsh - Fourier transform are quite similar to those of the classical Fourier transform (see, e.g., [6, Ch.6] or [11, Ch.9]). In particular, if $f \in L^{2}\left(\mathbf{R}_{+}\right)$, then $\tilde{f} \in L^{2}\left(\mathbf{R}_{+}\right)$and

$$
\|\tilde{f}\|_{L^{2}\left(\mathbf{R}_{+}\right)}=\|f\|_{L^{2}\left(\mathbf{R}_{+}\right)}
$$

If $x, y, \omega \in \mathbf{R}_{+}$and $x \oplus y$ is p-adic irrational, than

$$
\begin{equation*}
\chi(x \oplus y, \omega)=\chi(x, \omega) \chi(y, \omega) \tag{2.1}
\end{equation*}
$$

(see [6, § 1.5]). Thus, for fixed x and ω, the equality (2.1) holds for all $y \in \mathbf{R}_{+}$ except for countably many. It is known also, that the systems $\{\chi(\alpha, \cdot)\}_{\alpha=0}^{\infty}$ and $\{\chi(\cdot, \alpha)\}_{\alpha=0}^{\infty}$ are orthonormal bases in $L^{2}[0,1]$.

Accoding to $[6, \S 6.2]$ for any $\varphi \in L^{2}\left(\mathbf{R}_{+}\right)$we have

$$
\begin{equation*}
\int_{\mathbf{R}_{+}} \varphi(x) \overline{\varphi(x \ominus k)} d x=\int_{\mathbf{R}_{+}}|\tilde{\varphi}(\omega)|^{2} \overline{\chi(k, \omega)} d \omega, \quad k \in \mathbf{Z}_{+} \tag{2.2}
\end{equation*}
$$

Let us denote by $\{\omega\}$ the fractional part of ω. For $k \in \mathbf{Z}_{+}$, we have $\chi(k, \omega)=$ $\chi(k,\{\omega\})$. Thus from (2.2) it follows that

$$
\begin{gathered}
\int_{\mathbf{R}_{+}} \varphi(x) \overline{\varphi(x \ominus k)} d x=\sum_{l=0}^{\infty} \int_{l}^{l+1}|\tilde{\varphi}(\omega)|^{2} \overline{\chi(k,\{\omega\})} d \omega \\
=\int_{0}^{1}\left(\sum_{l \in \mathbf{Z}_{+}}|\tilde{\varphi}(\omega+l)|^{2}\right) \overline{\chi(k, \omega)} d \omega
\end{gathered}
$$

Therefore, a necessary and sufficient condition for a system $\left\{\varphi(\cdot \ominus k) \mid k \in \mathbf{Z}_{+}\right\}$ to be orthonormal in $L^{2}\left(\mathbf{R}_{+}\right)$is

$$
\begin{equation*}
\sum_{l \in \mathbf{Z}_{+}}|\tilde{\varphi}(\omega+l)|^{2}=1 \quad \text { a.e. } \tag{2.3}
\end{equation*}
$$

Definition. A multiresolution p-analysis in $L^{2}\left(\mathbf{R}_{+}\right)$is a sequence of closed subspaces $V_{j} \subset L^{2}\left(\mathbf{R}_{+}\right)(j \in \mathbf{Z})$ such that the following hold:
(i) $V_{j} \subset V_{j+1}$ for all $j \in \mathbf{Z}$.
(ii) The union $\bigcup V_{j}$ is dense in $L^{2}\left(\mathbf{R}_{+}\right)$, and $\bigcap V_{j}=\{0\}$.
(iii) $f(\cdot) \in V_{j} \Longleftrightarrow f(p \cdot) \in V_{j+1}$ for all $j \in \mathbf{Z}$.
(iv) $f(\cdot) \in V_{0} \Longrightarrow f(\cdot \oplus k) \in V_{0}$ for all $k \in \mathbf{Z}_{+}$.
(v) There is a function $\varphi \in L^{2}\left(\mathbf{R}_{+}\right)$such that $\left\{\varphi(\cdot \ominus k) \mid k \in \mathbf{Z}_{+}\right\}$is an orthonormal basis of V_{0}.

The function φ is called a scaling function in $L^{2}\left(\mathbf{R}_{+}\right)$.
By conditions (v) and (iii) the functions $\varphi_{1, k}(x)=p^{1 / 2} \varphi(p x \ominus k) \quad(k \in$ \mathbf{Z}_{+}) constitude an orthonormal basis in V_{1}. Since $V_{0} \subset V_{1}$, the scaling function φ belongs to V_{1} and has the Fourier expansion

$$
\varphi(x)=\sum_{k \in \mathbf{Z}_{+}} h_{k} p^{1 / 2} \varphi(p x \ominus k), \quad h_{k}=\int_{\mathbf{R}_{+}} \varphi(x) \overline{\varphi_{1, k}(x)} d x .
$$

This implies that

$$
\begin{equation*}
\varphi(x)=p \sum_{\alpha \in \mathbf{Z}_{+}} a_{\alpha} \varphi(p x \ominus \alpha), \quad \sum_{\alpha \in \mathbf{Z}_{+}}\left|a_{\alpha}\right|^{2}<+\infty, \tag{2.4}
\end{equation*}
$$

where $a_{\alpha}=p^{-1 / 2} h_{\alpha}$. Under the Walsh - Fourier transform we have

$$
\begin{equation*}
\tilde{\varphi}(\omega)=m_{0}\left(p^{-1} \omega\right) \tilde{\varphi}\left(p^{-1} \omega\right), \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
m_{0}(\omega)=\sum_{\alpha \in \mathbf{Z}_{+}} a_{\alpha} \overline{\chi(\alpha, \omega)} \tag{2.6}
\end{equation*}
$$

When $p=2$ a function ψ given by the formula

$$
\begin{equation*}
\psi(x)=2 \sum_{\alpha \in \mathbf{Z}_{+}}(-1)^{\alpha} \bar{a}_{\alpha} \varphi(2 x \ominus(\alpha \oplus 1)) \tag{2.7}
\end{equation*}
$$

is a wavelet in $L^{2}\left(\mathbf{R}_{+}\right)$, associated with the scaling function φ. Therefore, the system of functions

$$
\psi_{j, k}(x)=2^{j / 2} \psi\left(2^{j} x \ominus k\right) \quad\left(j \in \mathbf{Z}, k \in \mathbf{Z}_{+}\right)
$$

is an orthonormal bases in $L^{2}\left(\mathbf{R}_{+}\right)(c f .[1, \S 5.1]$ and $[9, \S 3])$.
Let $p>2$. It follows from (2.3) and (2.5) that

$$
\begin{equation*}
\left|m_{0}(\omega)\right|^{2}+\left|m_{0}(\omega+1 / p)\right|^{2}+\ldots+\left|m_{0}(\omega+(p-1) / p)\right|^{2}=1 \tag{2.8}
\end{equation*}
$$

for a.e. $\omega \in[0,1)$. Suppose that we have $p-1$ functions

$$
m_{l}(\omega)=\sum_{\alpha \in \mathbf{Z}_{+}} a_{\alpha}^{(l)} \overline{\chi(\alpha, \omega)}, \quad \sum_{\alpha \in \mathbf{Z}_{+}}\left|a_{\alpha}^{(l)}\right|^{2}<+\infty \quad(1 \leq l \leq p-1),
$$

such that

$$
\begin{equation*}
\left(m_{l}(\omega+k / p)\right)_{l, k=0}^{p-1} \tag{2.9}
\end{equation*}
$$

is a unitary matrix for a.e. $\omega \in[0,1)$ (for the problem of unitary extension see, e.g., [10],[12],[13]). We set

$$
\begin{equation*}
\psi_{l}(x)=p \sum_{\alpha \in \mathbf{Z}_{+}} a_{\alpha}^{(l)} \varphi(p x \ominus \alpha) \tag{2.10}
\end{equation*}
$$

and

$$
W_{0}^{(l)}=\cos _{L^{2}\left(\mathbf{R}_{+}\right)} \operatorname{span}\left\{\psi_{l}(\cdot \ominus k) \mid k \in \mathbf{Z}_{+}\right\} \quad(1 \leq l \leq p-1)
$$

Let W_{j} be the orthogonal complement of V_{j} in V_{j+1}. Then

$$
W_{0}=\bigoplus_{l=1}^{p-1} W_{0}^{(l)}, \quad L^{2}\left(\mathbf{R}_{+}\right)=\bigoplus_{j \in \mathbf{Z}} W_{j}
$$

where \bigoplus denotes the orthogonal direct sum with the inner product of $L^{2}\left(\mathbf{R}_{+}\right)$. Moreover, the system of functions

$$
\begin{equation*}
\psi_{j, k, l}(x)=p^{j / 2} \psi_{l}\left(p^{j} x \ominus k\right) \quad\left(j \in \mathbf{Z}, k \in \mathbf{Z}_{+}, 1 \leq l \leq p-1\right) \tag{2.11}
\end{equation*}
$$

is an orthonormal bases in $L^{2}\left(\mathbf{R}_{+}\right)$(cf. [10], [14]).

3 Construction of p-wavelets

Let $\varphi \in L^{2}\left(\mathbf{R}_{+}\right)$satisfies the refinement equation (1.2). As before, we get

$$
\begin{equation*}
\tilde{\varphi}(\omega)=m_{0}\left(p^{-1} \omega\right) \tilde{\varphi}\left(p^{-1} \omega\right) \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
m_{0}(\omega)=\sum_{\alpha=0}^{p^{n}-1} a_{\alpha} \overline{\chi(\alpha, \omega)} \tag{3.2}
\end{equation*}
$$

Suppose that

$$
\left.m_{0}(0)=1 \quad \text { (i.e. } \quad \sum_{\alpha=0}^{p^{n}-1} a_{\alpha}=1\right) .
$$

Put

$$
\Delta_{s}^{(n)}:=\left[s p^{-n},(s+1) p^{-n}\right) \quad \text { for } \quad s \in \mathbf{Z}_{+} .
$$

Then $m_{0}(\omega)$ is a constant on $\Delta_{s}^{(n)}$ for each s and $m_{0}(\omega)=1$ on $\Delta_{0}^{(n)}$. It follows from (3.1) that

$$
\begin{equation*}
\tilde{\varphi}(\omega)=\prod_{j=1}^{\infty} m_{0}\left(p^{-j} \omega\right), \quad \omega \in \mathbf{R}_{+} \tag{3.3}
\end{equation*}
$$

We note that $m_{0}\left(p^{-j} \omega\right)=1$ as $p^{-j} \omega \in \Delta_{0}^{(n)}$ (so product (3.3) is finite for every $\omega \in \mathbf{R}_{+}$).

We say that a function $f: \mathbf{R}_{+} \mapsto \mathbf{C}$ is W-continuous at a point $x \in \mathbf{R}_{+}$, if for each $\varepsilon>0$ there exists $\delta>0$ such that $|f(x \oplus y)-f(x)|<\varepsilon$ for $0<y<\delta$. It is known that $\chi(\alpha, \cdot)\left(\alpha \in \mathbf{Z}_{+}\right)$are W-continuous functions. By (3.2) and (3.3), the same is true for m_{0} and $\tilde{\varphi}$. Moreover, m_{0} and $\tilde{\varphi}$ are uniformly W-continuous in [0,1) (cf. [6, § 2.3], [11, § 9.2]).

The collection $\left\{\left[0, p^{-j}\right) \mid j \in \mathbf{Z}\right\}$ is a fundamental system of neighborhoods of zero in the W-topology on \mathbf{R}_{+}(cf. [6, §1.2]).

Suppose that E is a W-compact set in \mathbf{R}_{+}. The notation $E \equiv[0,1)$ $\left(\bmod \mathbf{Z}_{+}\right)$means that for each $x \in[0,1)$ there exists $k \in \mathbf{Z}_{+}$such that $x \oplus k \in E$. Denote by μ the Lebesgue measure on \mathbf{R}_{+}.

We can now state the analogue of Cohen's theorem (cf. [1, § 6.3] and [2, § 9.5]):

Theorem 2. Let

$$
m_{0}(\omega)=\sum_{\alpha=0}^{p^{n}-1} a_{\alpha} \overline{\chi(\alpha, \omega)}
$$

be a polynomial satisfying the following conditions:
(a) $m_{0}(0)=1$.
(b) $\sum_{j=0}^{p-1}\left|m_{0}\left(s p^{-n} \oplus j p^{-1}\right)\right|^{2}=1$ for $s=0,1, \ldots, p^{n-1}-1$.
(c) There exists a W-compact set E such that int $(E) \ni 0, \mu(E)=1, E \equiv$ $[0,1)\left(\bmod \mathbf{Z}_{+}\right)$, and

$$
\begin{equation*}
\inf _{j \in \mathbf{N}} \inf _{\omega \in E}\left|m_{0}\left(p^{-j} \omega\right)\right|>0 \tag{3.4}
\end{equation*}
$$

If the Walsh - Fourier transform of $\varphi \in L^{2}\left(\mathbf{R}_{+}\right)$can be written as

$$
\begin{equation*}
\tilde{\varphi}(\omega)=\prod_{j=1}^{\infty} m_{0}\left(p^{-j} \omega\right) \tag{3.5}
\end{equation*}
$$

then φ is a scaling function in $L^{2}\left(\mathbf{R}_{+}\right)$.
Remark 1. Assertion (b) of Theorem 2 is nothing but the statement that for our polynomial m_{0} the equality (2.8) is true.

Remark 2. It is easy to check that m_{0} with the coefficients $\left\{a_{\alpha}\right\}$ from (1.8) satisfies all conditions of Theorem 2. For example, since

$$
m_{0}(\omega) \neq 0 \quad \text { for all } \quad \omega \in[0,1 / p)
$$

condition (c) holds for $E=[0,1)$. Therefore, the function φ given by (1.7) is a scaling function in $L^{2}\left(\mathbf{R}_{+}\right)$.

Theorems 1 and 2 tell us a general procedure to design p-wavelets in $L^{2}\left(\mathbf{R}_{+}\right)$:

1. Choose a set of numbers $\left\{b_{m}: m \in \mathbf{N}(p, n), 1 \leq m \leq p^{n}-1\right\}$ so that (1.5) is true.
2. Compute $\left\{a_{\alpha}\right\}$ by (1.9).

3 . With m_{0} defined by (3.2) find

$$
m_{l}(\omega)=\sum_{\alpha \in \mathbf{Z}_{+}} a_{\alpha}^{(l)} \overline{\chi(\alpha, \omega)}, \quad(1 \leq l \leq p-1)
$$

such that $\left(m_{l}(\omega+k / p)\right)_{l, k=0}^{p-1}$ is a unitary matrix.
4. Define $\psi_{1}, \ldots, \psi_{p-1}$ by (2.10).

Remark 3. For wavelet construction the condition $b_{j} \neq 0$ in (1.5) can be replaced by assertion (c) of Theorem 2.

In connection with Remark 3 we give the following

Example 4. Let $p=2, n=3$ and

$$
m_{0}(\omega)=\left\{\begin{array}{lll}
1, & \text { if } & x \in[0,1 / 4) \cup[3 / 8,1 / 2) \cup[3 / 4,7 / 8), \\
0, & \text { if } & x \in[1 / 4,3 / 8) \cup[1 / 2,3 / 4) \cup[7 / 8,1) .
\end{array}\right.
$$

Then from (3.3) we see that $\tilde{\varphi}=\mathbf{1}_{E}$ where $E=[0,1 / 2) \cup[3 / 4,1) \cup[3 / 2,7 / 4)$. Under the inverse Walsh - Fourier transform we obtain

$$
\varphi(x)=\frac{1}{2} \mathbf{1}_{[0,2)}(x)+\frac{1}{4} \mathbf{1}_{[0,4)}(x)\left[w_{3}(x / 4)+w_{6}(x / 4)\right]
$$

(see also Example 2 for $a=c=1, b=0$). By Theorem 2, this function generate a multiresolution 2-analysis in $L^{2}\left(\mathbf{R}_{+}\right)$.

4 Proofs

To prove Theorems 1 and 2 , we need the following lemma (cf. [1, § 6.3] and [2, § 9.5]):

Lemma 1. Under the conditions of Theorem 2 the system $\{\varphi(\cdot \ominus k) \mid k \in$ $\left.\mathbf{Z}_{+}\right\}$is orthonormal in $L^{2}\left(\mathbf{R}_{+}\right)$.

Proof. For $l \in \mathbf{N}$ let

$$
\mu^{[l]}(\omega)=\prod_{j=1}^{l} m_{0}\left(\omega / p^{j}\right) \mathbf{1}_{E}\left(\omega / p^{l}\right), \quad \omega \in \mathbf{R}_{+} .
$$

Since $0 \in \operatorname{int}(E)$ and $m_{0}(\omega)=1$ on $\Delta_{0}^{(n)}$, we obtain from (3.5)

$$
\begin{equation*}
\lim _{l \rightarrow \infty} \mu^{[l]}(\omega)=\tilde{\varphi}(\omega), \quad \omega \in \mathbf{R}_{+} \tag{4.1}
\end{equation*}
$$

Also, by (a) and (c), there exists a number j_{0} such that

$$
m_{0}\left(\omega / p^{j}\right)=1 \quad \text { for } \quad j>j_{0}, \omega \in E .
$$

Thus,

$$
\tilde{\varphi}(\omega)=\prod_{j=1}^{j_{0}} m_{0}\left(p^{-j} \omega\right), \quad \omega \in E
$$

By (3.4), there is a constant $c_{1}>0$ such that

$$
\left|m_{0}\left(\omega / p^{j}\right)\right| \geq c_{1} \quad \text { for } \quad j \in \mathbf{N}, \omega \in E
$$

and so

$$
c_{1}^{-j_{0}}|\tilde{\varphi}(\omega)| \geq \mathbf{1}_{E}(\omega), \quad \omega \in \mathbf{R}_{+} .
$$

Therefore

$$
\left|\mu^{[l]}(\omega)\right|=\prod_{j=1}^{l}\left|m_{0}\left(\omega / p^{j}\right)\right| \mathbf{1}_{E}\left(\omega / p^{l}\right) \leq c_{1}^{-j_{0}} \prod_{j=1}^{l}\left|m_{0}\left(\omega / p^{j}\right)\right|\left|\tilde{\varphi}\left(\omega / p^{l}\right)\right|
$$

which by (3.5) yields

$$
\begin{equation*}
\left|\mu^{[l]}(\omega)\right| \leq c_{1}^{-j_{0}}|\tilde{\varphi}(\omega)| \quad \text { for } \quad l \in \mathbf{N}, \omega \in \mathbf{R}_{+} . \tag{4.2}
\end{equation*}
$$

Now, for $l \in \mathbf{N}$ we define

$$
I_{l}(s):=\int_{\mathbf{R}_{+}}\left|\mu^{[l]}(\omega)\right|^{2} \overline{\chi(s, \omega)} d \omega, \quad s \in \mathbf{Z}_{+}
$$

Setting $E_{l}:=\left\{\omega \in \mathbf{R}_{+} \mid p^{-l} \omega \in E\right\}$ and $\zeta=p^{-l} \omega$, we have

$$
\begin{align*}
& I_{l}(s)=\int_{E_{l}} \prod_{j=1}^{l}\left|m_{0}\left(\omega / p^{j}\right)\right|^{2} \overline{\chi(s, \omega)} d \omega= \\
= & p^{l} \int_{E}\left|m_{0}(\zeta)\right|^{2} \prod_{j=1}^{l-1}\left|m_{0}\left(p^{j} \zeta\right)\right|^{2} \overline{\chi\left(s, p^{l} \zeta\right)} d \zeta \tag{4.3}
\end{align*}
$$

where the last integrand is 1-periodic.
Using the assumption $E \equiv[0,1)\left(\bmod \mathbf{Z}_{+}\right)$and changing the variable we get from (4.3)

$$
I_{l}(s)=p^{l-1} \int_{0}^{1} \sum_{0}^{p-1}\left|m_{0}(\xi / p+i / p)\right|^{2} \prod_{j=1}^{l-1}\left|m_{0}\left(p^{j-1} \xi\right)\right|^{2} \overline{\chi\left(s, p^{l-1} \xi\right)} d \xi
$$

Therefore, in view of Remark 1,

$$
I_{l}(s)=p^{l-1} \int_{0}^{1} \prod_{j=0}^{l-2}\left|m_{0}\left(p^{j} \xi\right)\right|^{2} \overline{\chi\left(s, p^{l-1} \xi\right)} d \xi
$$

which by (4.3) becomes

$$
I_{l}(s)=I_{l-1}(s) .
$$

Since

$$
I_{1}(s)=p \int_{0}^{1}\left|m_{0}(\xi)\right|^{2} \overline{\chi(s, p \xi)} d \xi=\int_{0}^{1} \overline{\chi(s, \xi)} d \xi=\delta_{0, s}
$$

where $\delta_{0, s}$ is the Kronecker delta, we get

$$
\begin{equation*}
I_{l}(s)=\delta_{0, s} \quad\left(l \in \mathbf{N}, s \in \mathbf{Z}_{+}\right) \tag{4.4}
\end{equation*}
$$

In particular, for all $l \in \mathbf{N}$

$$
I_{l}(0)=\int_{\mathbf{R}_{+}}\left|\mu^{[l]}(\omega)\right|^{2} d \omega=1
$$

By (4.1) and Fatou's lemma we then obtain

$$
\int_{\mathbf{R}_{+}}|\tilde{\varphi}(\omega)|^{2} d \omega \leq 1
$$

Thus, from (4.1) and (4.2) by Lebesque's dominated convergence theorem it follows that

$$
\int_{\mathbf{R}_{+}}|\tilde{\varphi}(\omega)|^{2} \overline{\chi(s, \omega)} d \omega=\lim _{l \rightarrow \infty} I_{l}(s) .
$$

Hence by (2.2) and (4.4),

$$
\int_{\mathbf{R}_{+}} \varphi(x) \overline{\varphi(x \ominus s)} d x=\delta_{0, s}, \quad s \in \mathbf{Z}_{+}
$$

Proof of Theorem 1. Put $X_{1-n}=\mathbf{1}_{\left[0,1 / p^{n-1}\right]}$. For any $x \in \mathbf{R}_{+}$we have

$$
\begin{aligned}
& \int_{\mathbf{R}_{+}} X_{1-n}\left(\omega \ominus m / p^{n-1}\right) \chi(x, \omega) d \omega=\chi\left(x, m / p^{n-1}\right) \int_{0}^{1 / p^{n-1}} \chi(x, \omega) d \omega \\
&=\left(1 / p^{n-1}\right) \mathbf{1}_{[0,1)}\left(x / p^{n-1}\right) \chi\left(x, m / p^{n-1}\right)=\left(1 / p^{n-1}\right) \mathbf{1}_{[0,1)}\left(x / p^{n-1}\right) w_{m}\left(x / p^{n-1}\right) .
\end{aligned}
$$

Consequently, taking the Walsh - Fourier transform of both sides of (1.7) gives

$$
\begin{equation*}
\tilde{\varphi}(\omega)=X_{1-n}(\omega)+\sum_{m \in \mathbf{N}(p, n)} A(m) X_{1-n}\left(\omega \ominus m / p^{n-1}\right) \tag{4.5}
\end{equation*}
$$

If $\zeta \in\left[0,1 / p^{n-1}\right)$ and $m \in \mathbf{N}(p, n)$, then clearly

$$
\zeta \oplus \frac{m}{p^{n-1}}=\zeta+\frac{m}{p^{n-1}}
$$

since $\left[p^{n+j} \zeta\right](\bmod p)=0$ for all negative intergers j. Hence setting $\zeta=\omega \ominus$ m / p^{n-1}, we see from (4.5) that

$$
\tilde{\varphi}(\omega)=\left\{\begin{array}{cl}
1, & \text { if } \omega \in \Delta_{0}^{(n-1)} \tag{4.6}\\
A(m), & \text { if } \omega \in \Delta_{m}^{(n-1)}, \\
0 & \text { otherwise }
\end{array}\right.
$$

where $m \in \mathbf{N}(p, n)$.
Now, let the polynomial

$$
m_{0}(\omega)=\sum_{\alpha=0}^{p^{n}-1} a_{\alpha} \overline{\chi(\alpha, \omega)}
$$

satisfy the condition (1.8), that is, $m_{0}\left(s p^{-n}\right)=d_{s}^{(n)}$ for $0 \leq s \leq p^{n}-1$. Then, by the definition of $\{A(m)\}$, from (4.6) we have

$$
\tilde{\varphi}(\omega)=\prod_{j=1}^{\infty} m_{0}\left(p^{-j} \omega\right)
$$

and so

$$
\tilde{\varphi}(\omega)=m_{0}\left(p^{-1} \omega\right) \tilde{\varphi}\left(p^{-1} \omega\right)
$$

which gives (1.2). By Lemma 1 and Remark 2 the system $\left\{\varphi(\cdot \ominus k) \mid k \in \mathbf{Z}_{+}\right\}$ is orthonormal in $L^{2}\left(\mathbf{R}_{+}\right)$.

For integer m let $\mathcal{E}_{m}\left(\mathbf{R}_{+}\right)$denotes the collection of all functions f on \mathbf{R}_{+}which are constant on $\left[s p^{-m},(s+1) p^{-m}\right)$ for each $s \in \mathbf{Z}_{+}$. Further, we set

$$
\tilde{\mathcal{E}}_{m}\left(\mathbf{R}_{+}\right):=\left\{f: f \text { is } W \text {-continuous and } \tilde{f} \in \mathcal{E}_{m}\left(\mathbf{R}_{+}\right)\right\}
$$

and

$$
\mathcal{E}\left(\mathbf{R}_{+}\right):=\bigcup_{m=1}^{\infty} \mathcal{E}_{m}\left(\mathbf{R}_{+}\right), \quad \tilde{\mathcal{E}}\left(\mathbf{R}_{+}\right):=\bigcup_{m=1}^{\infty} \tilde{\mathcal{E}}_{m}\left(\mathbf{R}_{+}\right)
$$

The following properties are true (see [6, $\S 6.2$ and $\S 10.5]$):

1. $\mathcal{E}\left(\mathbf{R}_{+}\right)$and $\tilde{\mathcal{E}}\left(\mathbf{R}_{+}\right)$are dense in $L^{q}\left(\mathbf{R}_{+}\right)$for $1 \leq q \leq \infty$.
2. If $f \in L^{1}\left(\mathbf{R}_{+}\right) \cap \mathcal{E}_{m}\left(\mathbf{R}_{+}\right)$, then $\operatorname{supp} \tilde{f} \subset\left[0, p^{m}\right]$.
3. If $f \in L^{1}\left(\mathbf{R}_{+}\right) \cap \tilde{\mathcal{E}}_{m}\left(\mathbf{R}_{+}\right)$, then $\operatorname{supp} f \subset\left[0, p^{m}\right]$.

For $\varphi \in L^{2}\left(\mathbf{R}_{+}\right)$we put

$$
\varphi_{j, k}(x)=p^{j / 2} \varphi\left(p^{j} x \ominus k\right) \quad\left(j \in \mathbf{Z}, k \in \mathbf{Z}_{+}\right)
$$

and

$$
\begin{equation*}
V_{j}=\cos _{L^{2}\left(\mathbf{R}_{+}\right)} \operatorname{span}\left\{\varphi_{j, k} \mid k \in \mathbf{Z}_{+}\right\} \quad(j \in \mathbf{Z}) . \tag{4.7}
\end{equation*}
$$

Let P_{j} be the orthogonal projection of $L^{2}\left(\mathbf{R}_{+}\right)$to V_{j}. Also, we denote the norm in $L^{2}\left(\mathbf{R}_{+}\right)$briefly by $\|\cdot\|$.

As an analogue of Proposition 5.3.1 in [1] (cf. Theorem 2.2 in [12]), we have:

Lemma 2. If $\left\{\varphi_{0, k}\right\}$ is an orthogonal basis in V_{0}, then $\bigcap V_{j}=\{0\}$.
Proof. Let $f \in \bigcap V_{j}$. Given an $\varepsilon>0$ we choose $u \in L^{1}\left(\mathbf{R}_{+}\right) \cap \tilde{\mathcal{E}}\left(\mathbf{R}_{+}\right)$ such that $\|f-u\|<\varepsilon$. Then

$$
\left\|f-P_{j} u\right\| \leq\left\|P_{j}(f-u)\right\| \leq\|f-u\|<\varepsilon
$$

and so

$$
\begin{equation*}
\|f\| \leq\left\|P_{j} u\right\|+\varepsilon \tag{4.8}
\end{equation*}
$$

for every $j \in \mathbf{Z}$.
Now, choose $R>0$ so that $\operatorname{supp} u \subset[0, R)$. Then

$$
\left(P_{j} u, \varphi_{j, k}\right)=\left(u, \varphi_{j, k}\right)=p^{j / 2} \int_{0}^{R} u(x) \overline{\varphi\left(p^{j} x \ominus k\right)} d x .
$$

Hence, by the Cauchy - Schwarz inequality,

$$
\left\|P_{j} u\right\|^{2}=\sum_{k \in \mathbf{Z}_{+}}\left|\left(P_{j} u, \varphi_{j, k}\right)\right|^{2} \leq\|u\|^{2} \sum_{k \in \mathbf{Z}_{+}} p^{j} \int_{0}^{R}\left|\varphi\left(p^{j} x \ominus k\right)\right|^{2} d x .
$$

Therefore, if j is chosen small enough so that $R p^{j}<1$, then

$$
\begin{equation*}
\left\|P_{j} u\right\|^{2} \leq\|u\|^{2} \int_{S_{R, j}}|\varphi(x)|^{2} d x=\|u\|^{2} \int_{\mathbf{R}_{+}} \mathbf{1}_{S_{R, j}}(x)|\varphi(x)|^{2} d x, \tag{4.9}
\end{equation*}
$$

where $S_{R, j}:=\bigcup_{k \in \mathbf{Z}_{+}}\left\{y \ominus k \mid y \in\left[0, R p^{j}\right)\right\}$. It is easy to check that

$$
\lim _{j \rightarrow-\infty} \mathbf{1}_{S_{R, j}}(x)=0 \quad \text { for all } \quad x \notin \mathbf{Z}_{+} .
$$

Thus by the dominated convergence theorem from (4.9) we get

$$
\lim _{j \rightarrow-\infty}\left\|P_{j} u\right\|=0
$$

In view of (4.8), this implies that $\|f\| \leq \varepsilon$, and thus $\bigcap V_{j}=\{0\}$.
Proof of Theorem 2. Let a function φ be defined by Walsh-Fourier transform (3.5) and the spaces $V_{j}\left(j \in \mathbf{Z}_{+}\right)$are given by (4.7). As before, since $\tilde{\varphi}(\omega)=m_{0}(\omega / p) \tilde{\varphi}(\omega / p)$, we have

$$
\varphi(x)=p \sum_{\alpha=0}^{p^{n}-1} a_{\alpha} \varphi(p x \ominus \alpha),
$$

which implies that $V_{j} \subset V_{j+1}$. On account of Lemma 1, we see that conditions (i) and (iii)-(v) of multiresolution p-analysis are satisfied. By Lemma 2 we have $\bigcap V_{j}=\{0\}$. Therefore, it remains to confirm that

$$
\overline{\bigcup V_{j}}=L^{2}\left(\mathbf{R}_{+}\right)
$$

or, equvalently,

$$
\begin{equation*}
\left(\bigcup V_{j}\right)^{\perp}=\{0\} \tag{4.10}
\end{equation*}
$$

Let $f \in\left(\bigcup V_{j}\right)^{\perp}$. Given an $\varepsilon>0$ we choose $u \in L^{1}\left(\mathbf{R}_{+}\right) \cap \mathcal{E}\left(\mathbf{R}_{+}\right)$such that $\|f-u\|<\varepsilon$. Then for any $j \in \mathbf{Z}_{+}$we have

$$
\left\|P_{j} f\right\|^{2}=\left(P_{j} f, P_{j} f\right)=\left(f, P_{j} f\right)=0
$$

and so

$$
\begin{equation*}
\left\|P_{j} u\right\|=\left\|P_{j}(f-u)\right\| \leq\|f-u\|<\varepsilon \tag{4.11}
\end{equation*}
$$

Choose a positive integer j so large that $\operatorname{supp} \tilde{u} \subset\left[0, p^{j}\right)$ and $p^{-j} \omega \in$ $\left[0, p^{-n+1}\right)$ for all $\omega \in \operatorname{supp} \tilde{u}$. Then we put $g(\omega)=\tilde{u}(\omega) \tilde{\varphi}\left(p^{-j} \omega\right)$. As the system $\left\{p^{-j / 2} \chi\left(p^{-j} k, \cdot\right)\right\}_{k=0}^{\infty}$ is an orthonormal bases in $L^{2}\left[0, p^{j}\right]$, we have

$$
\begin{equation*}
\sum_{k \in \mathbf{Z}_{+}}\left|c_{k}(g)\right|^{2}=p^{-j} \int_{0}^{p^{j}}|g(\omega)|^{2} d \omega \tag{4.12}
\end{equation*}
$$

where

$$
c_{k}(g)=p^{-j / 2} \int_{0}^{p^{j}} g(\omega) \overline{\chi\left(p^{-j} k, \omega\right)} d \omega .
$$

Observing that

$$
\int_{\mathbf{R}_{+}} \varphi\left(p^{j} x \ominus k\right) \overline{\chi(x, \omega)} d x=p^{-j} \tilde{\varphi}\left(p^{-j} \omega\right) \overline{\chi\left(p^{-j} k, \omega\right)}
$$

by the Plancherel relation we get

$$
p^{-j / 2}\left(u, \varphi_{j, k}\right)=p^{-j} \int_{0}^{p^{j}} g(\omega) \overline{\chi\left(p^{-j} k, \omega\right)} d \omega .
$$

Thus, in view of (4.12),

$$
\begin{equation*}
\left\|P_{j} u\right\|^{2}=\sum_{k \in \mathbf{Z}_{+}}\left|\left(u, \varphi_{j, k}\right)\right|^{2}=\int_{0}^{p^{j}}\left|\tilde{u}(\omega) \tilde{\varphi}\left(p^{-j} \omega\right)\right|^{2} d \omega \tag{4.13}
\end{equation*}
$$

Since $m_{0}(\omega)=1$ on $\Delta_{0}^{(n)}$ and since $p^{-j} \omega \in\left[0, p^{-n+1}\right)$ for $\omega \in \operatorname{supp} \tilde{u}$, it follows from (3.5) that $\tilde{\varphi}\left(p^{-j} \omega\right)=1$ for all $\omega \in \operatorname{supp} \tilde{u}$. Furthermore, because $\operatorname{supp} \tilde{u} \subset\left[0, p^{j}\right)$, we obtain from (4.11) and (4.13)

$$
\varepsilon>\left\|P_{j} u\right\|=\|\tilde{u}\|=\|u\| .
$$

Consequently, we conclude

$$
\|f\|<\varepsilon+\|u\|<2 \varepsilon
$$

which implies (4.10).

References

[1] I. Daubechies, Ten lectures on wavelets, SIAM, Philadelphia, 1992.
[2] Satoru Igari, Real analysis - with an introduction to wavelet theory, AMS Translations of mathematical monographs, 177, Providence, Rhode Island, 1998.
[3] Q. Sun and Z. Zhang, M-band scaling function with filter having vanishing moments two and minimal length, J. Math. Anal. and Appl., 222 (1998), 225-243.
[4] Malay K. Kundu and Mausumi Acharyya, M-band wavelets: application to texture segmentation for real life image analysis, Int. J. Wavelets, Multiresolution and Inf. Processing, 1 (2003), 115-149.
[5] B.I. Golubov, A modified strong dyadic integral and derivative, Matem. Sbornik, 193 (2002), 37-60 (in Russian); English transl. in Sbornik: Mathematics, 193 (2002).
[6] B.I. Golubov, A.V. Efimov, and V.A. Skvortsov, Walsh series and transforms, Moscow: Nauka, 1987; English transl.: Kluwer, Dordrecht, 1991.
[7] W.C. Lang, Orthogonal wavelets on the Cantor dyadic group, SIAM J. Math. Anal., 27 (1996), 305-312.
[8] W.C. Lang, Fractal multiwavelets related to the Cantor dyadic group, Int. J. Math. and Math. Sci., 21 (1998), 307-317.
[9] W.C. Lang, Wavelet analysis on the Cantor dyadic group, Houston J. Math., 24 (1998), 533-544.
[10] G.V. Welland and M. Lundberg, Construction of compact p-wavelets, Constr. Approx., 9 (1993), 347-370.
[11] F. Schipp, W.R. Wade, and P. Simon, Walsh series: An introduction to dyadic harmonic analysis, Adam Hilger, Bristol and New York, 1990.
[12] R.Q. Jia and Z. Shen, Multiresolution and wavelets, Proc. Edinburg Math. Soc., 37 (1994), 271-300.
[13] Chen Di-Rong, On the existence and constructions of orthonormal wavelets on $L_{2}\left(\mathbf{R}^{s}\right)$, Proc. Amer. Math. Soc., 125 (1997), 2883-2889.
[14] Yu.A. Farkov, Orthogonal wavelets on locally compact abelian groups, Funkts. Anal. i Prilozhen., 31 (1997), 86-88 (in Russian); English transl. in Funct. Anal. Appl., 31 (1997).
[15] Yu.A. Farkov, Compactly supported orthogonal wavelets on locally compact abelian groups, To appear in Izv. Russian Akad. Nauk. Ser. Mat., 69 (3) (2005), 193-220 (in Russian); English transl. in Izvestiya: Mathematics, 69 (2005).

Higher Mathematics and Mathematical Modelling Department, Moscow State Geological Prospecting University 23, Ulitsa Miklukho-Maklaya, Moscow 117873, Russia farkov@msgpa.ru

[^0]: This work was supported by the Russian Foundation for Fundamental Researches, grant 02-01-00386.

