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Dyadic wavelets and refinable functions on a half-line

V.Yu. Protasov and Yu.A. Farkov

Abstract. For an arbitrary positive integer n refinable functions on the pos-
itive half-line R+ are defined, with masks that are Walsh polynomials of order
2n − 1. The Strang-Fix conditions, the partition of unity property, the linear
independence, the stability, and the orthonormality of integer translates of
a solution of the corresponding refinement equations are studied. Necessary
and sufficient conditions ensuring that these solutions generate multiresolu-
tion analysis in L2(R+) are deduced. This characterizes all systems of dyadic
compactly supported wavelets on R+ and gives one an algorithm for the con-
struction of such systems. A method for finding estimates for the exponents
of regularity of refinable functions is presented, which leads to sharp esti-
mates in the case of small n. In particular, all the dyadic entire compactly
supported refinable functions on R+ are characterized. It is shown that a
refinable function is either dyadic entire or has a finite exponent of regularity,
which, moreover, has effective upper estimates.

Bibliography: 13 items.

Introduction

Throughout this paper we use the following notation: R+ = [0,+∞) is the posi-
tive half-line, {wj} is the Walsh system on R+, ⊕ and 	 are the dyadic operations
in R+, f̂ is the Walsh-Fourier transform of a function f (see § 1 and also [1], and [2]).
As usual, we denote by N and Z+ the sets of positive and of non-negative integers,
respectively.

Basic facts about orthogonal wavelets and refinable functions on the real line R
can be found in [3]. In this paper, for an arbitrary positive integer n we study
solutions ϕ of the refinement equation

ϕ(x) =
2n−1∑
k=0

ckϕ(2x	 k), x ∈ R+, (0.1)

generating multiresolution analyses in L2(R+). The coefficients ck of equation (0.1)
are arbitrary complex numbers. We focus on compactly supported non-trivial solu-
tions ϕ ∈ L2(R+) of this equation. If such a solution ϕ exists, then it is unique
up to multiplication by a constant and, moreover, ϕ̂(0) 6= 0. In § 2 we show that

The research of the first author was carried out with the support of the Russian Foundation
for Basic Research (grant no. 05-01-00066) and the Programme of Support of Leading Scientific
Schools of RF (grant no. NSh 304.2003.1). The research of the second author was carried out
with the support of the Russian Foundation for Basic Research (grant no. 02-01-00386).

AMS 2000 Mathematics Subject Classification. Primary 42C40; Secondary 43A70.



1530 V.Yu. Protasov and Yu.A. Farkov

if equation (0.1) possesses a compactly supported solution ϕ ∈ L2(R+) normalized
by the condition ϕ̂(0) = 1, then

2n−1∑
k=0

ck = 2, suppϕ ⊂ [0, 2n−1], and ϕ̂(ω) =
∞∏

j=1

m(2−jω), (0.2)

where

m(ω) =
1
2

2n−1∑
k=0

ckwk(ω) (0.3)

is a Walsh polynomial called the mask of equation (0.1) (or the mask of its solu-
tion ϕ). Furthermore, this solution has the following properties (see § 2 and § 3):

(1) ϕ̂(r) = 0 for all r ∈ N (the modified Strang-Fix condition);
(2)

∑
k∈Z+

ϕ(x⊕ k)= 1 for almost all x∈R+ (the partition of unity property);
(3) if the system {ϕ( · 	 k) | k ∈ Z+} is orthogonal in L2(R+), then

|m(ω)|2 + |m(ω + 1/2)|2 = 1 for each ω ∈ [0, 1/2). (0.4)

Dyadic intervals of range n are intervals of the following form:

I
(n)
k = [k2−n, (k + 1)2−n), k ∈ Z+.

We recall that for each 0 6 j 6 2n − 1 the Walsh function wj(x) is piecewise
constant: on each interval I(n)

k it is either equal to 1 or to −1. Moreover, wj(x) = 1
for x ∈ I(n)

0 . We now set

bl = m(ω) for ω ∈ I(n)
l , 0 6 l 6 2n − 1,

where m is the mask of refinement equation (0.1). Equalities (0.2) and (0.4) yield

b0 = 1, |bl|2 + |bl+2n−1 |2 = 1, 0 6 l 6 2n−1 − 1. (0.5)

The coefficients of refinement equation (0.1) are related to the values bl of
mask (0.3) on dyadic intervals by means of the direct and the inverse Walsh trans-
formations:

ck =
1

2n−1

2n−1∑
l=0

blwl(k2−n), 0 6 k 6 2n − 1, (0.6)

bl =
1
2

2n−1∑
k=0

ckwk(l2−n), 0 6 l 6 2n − 1. (0.7)

They can be realized by fast algorithms, which are similar to the classical algorithms
of the fast Fourier transformation (see, for instance, [2], Ch. 9). Thus, our choice of
the values of a mask (0.3) on the dyadic intervals of range n defines also the coef-
ficients of equation (0.1) for the corresponding function ϕ.
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Definition 1. Multiresolution analysis (MRA) in L2(R+) is a sequence of closed
subspaces Vj ⊂ L2(R+), j ∈ Z such that

(i) Vj ⊂ Vj+1 for each j ∈ Z;
(ii) the union

⋃
Vj is dense in L2(R+), and

⋂
Vj = {0};

(iii) f( · ) ∈ Vj ⇔ f(2 · ) ∈ Vj+1 for each j ∈ Z;
(iv) f( · ) ∈ V0 ⇒ f( · ⊕ k) ∈ V0 for all k ∈ Z+;
(v) there is a function ϕ ∈ L2(R+) such that the system {ϕ( · 	 k) | k ∈ Z+}

forms an orthonormal basis in V0.
The function ϕ in condition (v) is called a dyadic scaling function or a dyadic
refinable function in L2(R+).

For arbitrary ϕ ∈ L2(R+) we set

ϕjk(x) = 2j/2ϕ(2jx	 k), j ∈ Z, k ∈ Z+.

We say that a function ϕ generates MRA in L2(R+) if the system {ϕ( · 	 k) |
k ∈ Z+} is orthonormal in L2(R+) and, in addition, the family of subspaces

Vj = closL2(R+) span{ϕjk | k ∈ Z+}, j ∈ Z, (0.8)

is MRA in L2(R+). If a function ϕ generates MRA in L2(R+), then it is a dyadic
refinable function in L2(R+). Each dyadic refinable function ϕ defines by means of
a routine procedure (see [4]–[6]) a dyadic wavelet ψ on R+ such that the functions

ψjk(x) = 2j/2ψ(2jx	 k), j ∈ Z, k ∈ Z+,

form an orthonormal basis in L2(R+).

Example 1. In the case of n = 1 and c0 = c1 = 1 the solution of (0.1) is the Haar
function ϕ = χ[0,1) (throughout this paper we denote by χE the indicator function
of the set E). In this case

m(ω) =

{
1 for ω ∈ [0, 1/2),
0 for ω ∈ [1/2, 1),

ψ(x) =


1 for x ∈ [0, 1/2),

−1 for x ∈ [1/2, 1),
0 for x ∈ R+ \ [0, 1).

The corresponding wavelets system {ψjk} is the classical Haar system.

Example 2. The Lang refinable function [4] occurs in the case n = 2 for the mask

m(ω) =


1 for ω ∈ [0, 1/4),
a for ω ∈ [1/4, 1/2),
0 for ω ∈ [1/2, 3/4),
b for ω ∈ [3/4, 1),

where 0 < |a| < 1, |b| =
√

1− |a|2. The function ϕ satisfies the equation

ϕ(x) =
3∑

k=0

ckϕ(2x	 k)
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with coefficients

c0 =
1 + a+ b

2
, c1 =

1 + a− b

2
, c2 =

1− a− b

2
, c3 =

1− a+ b

2
.

This function generates MRA in L2(R+), possesses the following self-similarity
property:

ϕ(x) =


1 + a− b

2
+ bϕ(2x) for 0 6 x < 1,

1− a+ b

2
− bϕ(2x− 2) for 1 6 x 6 2,

and is represented by a lacunary Walsh series:

ϕ(x) =
1
2
χ[0,1)

(
x

2

)(
1 + a

∞∑
j=0

bjw2j+1−1

(
x

2

))
, x ∈ R+. (0.9)

Furthermore, for |b| < 1/2 the corresponding wavelets system {ψjk} is an uncondi-
tional basis in all the spaces Lq(R+), 1 < q <∞ (see [5]).

We now denote by 	p the operation of subtraction modulo p in R+. In [6] for
all p, n > 2 the author finds coefficients ck, 0 6 k 6 pn− 1 such that the solution ϕ
of the equation

ϕ(x) =
pn−1∑
k=0

ckϕ(px	p k), x ∈ R+, (0.10)

possesses the following properties:
(1) ϕ is the sum of a lacunary Walsh series;
(2) the system {ϕ( · 	p k) | k ∈ Z+} is orthonormal in L2(R+);
(3) suppϕ ⊂ [0, pn−1];
(4) ϕ generates p-multiresolution analysis in L2(R+).
For the calculation of the coefficients of equation (0.10) one chooses pn− p com-

plex parameters satisfying a certain ‘orthogonality condition’, complements them by
p− 1 zeros, and applies the fast Vilenkin–Chrestenson transform. In [7] the author
constructs similar refinable functions and the corresponding wavelets on the locally
compact Abelian group Gp of sequences x = (xj) = (. . . , 0, 0, xk, xk+1, xk+2, . . . ),
where xj ∈ {0, 1, . . . , p − 1} for j ∈ Z and xj = 0 for j < k = k(x). The group
operation in Gp is coordinatewise addition modulo p, and the topology corresponds
to the complete system of neighbourhoods of zero

Ul = {(xj) ∈ Gp : xj = 0, j 6 l}, l ∈ Z.

In the case p = 2 the subgroup U0 is isomorphic to the Cantor dyadic group, that
is, the topological direct product of countably many cyclic groups of the second
order equipped with the discrete topology. Basic facts and methods of the theory
of harmonic analysis on G2 (the additive group of the dyadic field F) can be found
in the monograph [2]. Dyadic wavelets on this group were studied in [4], [5].

The results of this paper concern mainly the following four problems:
1. Find necessary and sufficient conditions in order that solutions of functional

equation (0.1) generate multiresolution analysis in L2(R+).
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2. Derive conditions in order that the system {ϕ( · 	 k) | k ∈ Z+}, where ϕ is a
solution of (0.1), be linearly independent, stable, or orthonormal in L2(R+).

3. Estimate the regularity of solutions of equation (0.1).
4. Derive necessary and sufficient conditions in order that solutions of (0.1) be

infinitely smooth or dyadic entire.
We shall indicate some crucial differences between our results in this paper and

the corresponding results of the classical wavelet analysis on R (see Remark 2).
Some of our results extend in a natural fashion to wavelets and refinable functions
on the group Gp, as also to solutions of equation (0.10) on the half-line R+.

We start with some definitions. The family {[0, 2−j) | j ∈ Z} forms a fundamen-
tal system of the dyadic topology in R+ (see, for example, [2], § 1.3). A subset E
of R+ that is compact in the dyadic topology is said to be W -compact. It is easy to
see that the union of a finite family of dyadic intervals is W -compact. A W -compact
set E is said to be congruent to [0, 1) modulo Z+ if its Lebesgue measure is 1 and
for each x ∈ [0, 1) there exists k ∈ Z+ such that x ⊕ k ∈ E. We say that a Walsh
polynomial m satisfies the modified Cohen criterion if there exists a W -compact
subset E of R+ congruent to [0, 1) modulo Z+ and containing a neighbourhood of
zero such that

inf
j∈N

inf
ω∈E

|m(2−jω)| > 0. (0.11)

For an arbitrary set M ⊂ [0, 1) we set

TM :=
1
2
M ∪

(
1
2

+
1
2
M

)
, (0.12)

where α+ βM := {α+ βx | x ∈M}.

Definition 2. Let m be the mask of refinement equation (0.1). A set M ⊂ [0, 1)
is said to be blocked (for the mask m) if it is a union of dyadic intervals of range
n− 1, does not contain the interval [0, 2−n+1), and possesses the property

TM ⊂M ∪Nullm,

where Nullm is the zero set of the mask m on [0, 1).

For a compactly supported L2-solution ϕ of equation (0.1) such that ϕ̂(0) = 1 it
follows by the orthonormality of the system {ϕ( · 	 k) | k ∈ Z+} in L2(R+) that

m(0) = 1, |m(ω)|2 + |m(ω + 1/2)|2 = 1 for each ω ∈ [0, 1/2). (0.13)

In § 4 we establish the converse result: if a mask m of a compactly supported
L2-solution ϕ of equation (0.1) satisfies (0.13) and one of the following equivalent
conditions:

(1) m has no blocked sets;
(2) m satisfies the modified Cohen criterion,

then ϕ generates MRA in L2(R+) (and, therefore, the system {ϕ( · 	 k) | k ∈ Z+}
is orthonormal in L2(R+)).

Computing the quantities bl, 0 6 l 6 2n− 1 for a fixed mask m by formula (0.7)
one can write equalities (0.13) in the form (0.5). We point out that since m(ω) ≡ 1
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on I
(n)
0 , it is sufficient for the verification of condition (0.11) to find an integer

j0 such that E/2j0 ⊂ I
(n)
0 and to verify that m does not vanish on the sets

E/2, . . . , E/2j0−1. If m(ω) 6= 0 on [0, 1/2), then (0.11) holds for E = [0, 1) (see
Examples 1, 2, 5). In the next example we define a one-parameter family of dyadic
entire refinable functions.

Example 3. Let n = 3 and let

m(ω) =


1 if ω ∈ [0, 1/4) ∪ [3/8, 1/2),
b if ω ∈ [1/4, 3/8),
0 if ω ∈ [1/2, 3/4) ∪ [7/8, 1),
β, if ω ∈ [3/4, 7/8),

(0.14)

where 0 6 |b| < 1, |β| =
√

1− |b|2. Then (0.2) yields

ϕ̂(ω) = χ[0,1/2)(ω) + bχ[1/2,3/4)(ω) + χ[3/4,1)(ω) + βχ[3/2,7/4)(ω).

Computing the inverse Walsh-Fourier transform we obtain the refinable function

ϕ(x) =
1
4
χ[0,4)(x)

[
1 + w1

(
x

4

)
+ bw2

(
x

4

)
+ w3

(
x

4

)
+ βw6

(
x

4

)]
, (0.15)

the mask of which satisfies (0.11) for E = [0, 1/2) ∪ [3/4, 1) ∪ [3/2, 7/4). Func-
tion (0.15) generates MRA in L2(R+) and satisfies the equation

ϕ(x) =
7∑

k=0

ckϕ(2x	 k)

with coefficients

c0 =
3 + b+ β

4
, c1 =

3 + b− β

4
, c2 = c6 =

1− b− β

4
,

c3 = c7 =
1− b+ β

4
, c4 =

−1 + b+ β

4
, c5 =

−1 + b− β

4
.

These representations of the coefficients follow from (0.6) and (0.14). For b = 0
function (0.15) was considered in [6], Example 4.

In § 5 we obtain expansions of refinable functions in lacunary Walsh series and
elaborate a method for the computation of the regularity of these functions (which
produces precise values in the case of small n). Similar results for the locally
compact Abelian group Gp can be found in the recent paper [7]. In § 6 we derive
a criterion for refinable functions to be dyadic entire, and in § 7 we prove that a
refinable function is either dyadic entire or has a finite exponent of regularity with
an effective upper estimate.

§ 1. Preliminary facts and results

The Walsh system {wn | n ∈ Z+} on R+ is defined as follows:

w0(x) ≡ 1, wn(x) =
k∏

j=0

(w1(2jx))νj , n ∈ N, x ∈ R+,
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where the νj are the coefficients of the decomposition

n =
k∑

j=0

νj2j , νj ∈ {0, 1}, νk = 1, k = k(n),

and the function w1(x) is defined on [0, 1) by the formula

w1(x) =

{
1, if x ∈ [0, 1/2),

−1, if x ∈ [1/2, 1),

and is extended to R+ by periodicity: w1(x+ 1) = w1(x) for all x ∈ R+.
Walsh polynomials are finite linear combinations of the Walsh functions. An

arbitrary Walsh polynomial of order n can be written in the following form:

w(x) =
n∑

j=0

cjwj(x),

where the cj are complex coefficients. For more information about the proper-
ties of Walsh polynomials and their role in the dyadic harmonic analysis see, for
example, [1], [2].

We shall denote the integer and the fractional parts of a number x ∈ R+ by [x]
and {x} respectively.

For x ∈ R+ and j ∈ N we define the numbers xj , x−j ∈ {0, 1} as follows:

xj = [2jx] (mod 2), x−j = [21−jx] (mod 2). (1.1)

They are the digits of the binary expansion

x =
∑
j<0

xj2−j−1 +
∑
j>0

xj2−j

(for dyadic x we obtain an expansion with finitely many non-zero terms).
For fixed x, y ∈ R+ we set

x⊕ y =
∑
j<0

|xj − yj |2−j−1 +
∑
j>0

|xj − yj |2−j ,

where xj , yj are defined in (1.1). By definition x	 y = x⊕ y (because x⊕ x = 0).
The binary operation ⊕ identifies R+ with the group G2 and is useful in the study
of dyadic Hardy classes and for the construction of algorithms in signal processing
(see [1], [2]). We point out that this identification associates Haar measure in G2

with Lebesgue measure on R+, and the characters of the group G2 with generalized
Walsh functions.

A function f : R+ → C is said to be W -continuous at a point x ∈ R+ if

sup
06h<1/2n

|f(x⊕ h)− f(x)| → 0 as n→∞.
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A function f is W -continuous if it is W -continuous at each point of R+. A contin-
uous (in the usual sense) function on R+ is also W -continuous. Walsh polynomials
are W -continuous (see, for example, [2], § 1.3).

For x, ω ∈ R+ we set

χ(x, ω) = (−1)σ(x,ω), where σ(x, ω) =
∞∑

j=1

xjω−j + x−jωj

and xj , ωj are defined by (1.1). Observe that for each positive integer n we have

χ(x, 2−nl) = χ(2−nx, l) = wl(2−nx) for all x ∈ [0, 2n), l ∈ Z+.

The Walsh-Fourier transform of the function f ∈ L1(R+) is defined as follows:

f̂(ω) =
∫

R+

f(x)χ(x, ω) dx.

If f ∈ L2(R+) and

Jaf(ω) =
∫ a

0

f(x)χ(x, ω) dx, a > 0,

then f̂ is the limit of Jaf in L2(R+) as a→∞.
The properties of the Walsh-Fourier transformation are quite similar to the prop-

erties of the classical Fourier transformation (see, for example, [1], Ch. 6 or [2],
Ch. 9). We list some of them below.

Proposition 1. The following properties hold :
(a) if f ∈ L1(R+), then f̂ is a W -continuous function and f̂(ω) → 0 as ω →∞;
(b) the inversion formula

f(x) =
∫

R+

f̂(ω)χ(x, ω) dω;

holds for each x ∈ R+, provided that both f and f̂ belong to L1(R+) and f is
W -continuous.

(c) if f ∈ L2(R+), then f̂ ∈ L2(R+) and

‖f̂‖L2(R+) = ‖f‖L2(R+).

In what follows En is the space of dyadic entire functions of order n, that is, of
functions defined in R+ and constant on all intervals of range n. For f ∈ En one
has

f(x) =
∞∑

k=0

f(2−nk)χ
I
(n)
k

(x), x ∈ R+.

Clearly, each Walsh polynomial of order 2n − 1 belongs to En. The set E of dyadic
entire functions on R+ is the union of all the spaces En. The refinable functions in
Examples 1 and 3 belong to E .
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Proposition 2. The following properties hold :
(a) if supp f̂ ⊂ [0, 2n], then f ∈ En, provided that both f and f̂ belong to L1(R+)

and f is W -continuous ;
(b) if f ∈ L1(R+) ∩ En, then supp f̂ ⊂ [0, 2n];
(c) if f ∈ L1(R+) and supp f ⊂ [0, 2n], then f̂ ∈ En; in a similar way, if

g ∈ L1(R+) and supp g ⊂ [0, 2n], then the inverse Walsh-Fourier transform
of the function g belongs to En;

(d) if f̂ ∈En, then supp f⊂ [0, 2n], provided that f ∈L1(R+) and f isW -continuous.

Proofs of all these properties can be found in [1], § 6.2. We also require the
following two propositions from [6].

Proposition 3. Let ϕ ∈ L2(R+). Then the system {ϕ( ·	k) | k ∈ Z+} is orthonor-
mal in L2(R+) if and only if∑

l∈Z+

|ϕ̂(ω ⊕ l)|2 = 1 for almost all ω ∈ R+. (1.2)

Proposition 4. Let {Vj} be a family of subspaces defined by formula (0.8) with a
fixed function ϕ ∈ L2(R+). If the system

{ϕ( · 	 k) | k ∈ Z+}

forms an orthonormal basis in V0, then
⋂
Vj = {0}.

Results similar to Propositions 3, 4 and useful in the construction of wavelets in
L2(R) are well known (see [3], §§ 5.1, 5.3).

§ 2. The uniqueness of the solution, the Strang-Fix
condition, and the partition of unity property

Let ϕ ∈ L2(R+) be a solution of equation (0.1). Using the Walsh-Fourier trans-
form we obtain

ϕ̂(ω) = m

(
ω

2

)
ϕ̂

(
ω

2

)
, (2.1)

where

m(ω) =
1
2

2n−1∑
k=0

ckwk(ω) (2.2)

is the mask of refinement equation (0.1).

Theorem 1. If equation (0.1) has a compactly supported solution ϕ ∈ L2(R+) such
that ϕ̂(0) = 1, then

2n−1∑
k=0

ck = 2 and suppϕ ⊂ [0, 2n−1]. (2.3)

This solution is unique, is given by the formula

ϕ̂(ω) =
∞∏

j=1

,m(2−jω) (2.4)
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and possesses the following properties :
(1) ϕ̂(r) = 0 for all r ∈ N (the modified Strang-Fix condition);
(2)

∑
k∈Z+

ϕ(x⊕ k) = 1 for almost all x ∈ R+ (the partition of unity property).

Proof. Assume that equation (0.1) possesses a solution ϕ ∈ L2(R+) with compact
support such that ϕ̂(0) = 1. Substituting ω = 0 in (2.1) we obtain m(0) = 1,
therefore

∑2n−1
k=0 ck = 2. Further, let j be the greatest integer such that ϕ does

not vanish on a positive-measure subset of the interval [j − 1, j]. Assume that
j > 2n−1 + 1 and consider an arbitrary dyadic x ∈ [j − 1, j]. If

[2x] = l (mod 2n),

where l ∈ {1, 2, . . . , 2n− 1}, then 2x > 2n + l and for each k ∈ {0, 1, . . . , 2n− 1} we
have

2x	 k > 2x− l > 2n.

Moreover, since {2x} > 0, it follows that 2x 	 k > 2n. Combining this with (0.1)
we conclude that j > 2n + 1; otherwise ϕ(2x 	 k) = 0 for almost all x ∈ [j − 1, j]
and for each k. Applying now (0.1) we obtain ϕ(x) = 0 a.e. on [j − 1, j], which
contradicts our choice of j. Furthermore, since 2x is not an integer and x > j − 1,
it follows that for each k ∈ {0, 1, . . . , 2n − 1}

2x	 k > 2x− (2n − 1) > (2j − 2)− (2n − 1) > j

(we use here the inequality j > 2n + 1). Arguing as above we obtain ϕ(x) = 0 a.e.
on [j − 1, j]. Thus, j 6 2n−1, therefore suppϕ ⊂ [0, 2n−1], and we arrive at (2.3).

We now claim that the Walsh-Fourier transform ϕ̂ satisfies (2.4). First, ϕ belongs
to L1(R+) because it belongs to L2(R+) and has a compact support. Applying
now (2.3) and Proposition 2(c) we obtain ϕ̂ ∈ En−1. Using the condition ϕ̂(0) = 1
we see that ϕ̂(ω) = 1 for all ω ∈ [0, 21−n). On the other hand, m(ω) = 1 for
ω ∈ [0, 21−n). Hence, for each ω ∈ [0, 2r) (r is a positive integer) one has

ϕ̂(ω) = ϕ̂(2−r−nω)
r+n∏
k=1

m(2−kω) =
∞∏

k=1

m(2−kω),

which completes the proof of (2.4) and of the uniqueness of ϕ.
We observe that for each r ∈ N we have

ϕ̂(r) = ϕ̂(r)
j−1∏
s=0

m(2sr) = ϕ̂(2jr) → 0

as j →∞ (since ϕ̂ ∈ L1(R+) and m(2sr) = 1 because m(0) = 1 and m is periodic).
This means that ϕ̂(r) = 0. By Poisson’s summation formula we obtain

∞∑
k=0

ϕ(x⊕ k) =
∞∑

r=0

ϕ̂(r)wr(x)
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(the equality holds almost everywhere in Lebesgue measure). Since ϕ̂(r) = δ0r, it
follows that

∞∑
k=0

ϕ(x⊕ k) = ϕ̂(0)w0(x) = 1.

The proof of the theorem is now complete.

§ 3. Linear independence and stability in Lq(R+R+R+R+R+R+R+)

A function f ∈ Lq(R+), 1 6 q 6 ∞ is q-stable if there exist positive constants Aq

and Bq such that

Aq‖a‖`q 6

∥∥∥∥ ∑
k∈Z+

akf( · 	 k)
∥∥∥∥

Lq(R+)

6 Bq‖a‖`q (3.1)

for each sequence a = {ak} ∈ `q. In particular, a function f ∈ L2(R+) is 2-stable
if and only if {f( · 	 k) | k ∈ Z+} is a Riesz system in L2(R+) (for more infor-
mation about Riesz bases and systems see, for example, [8]). We say that a func-
tion f : R+ → C has a periodic zero at a point x ∈ R+ if f(x⊕k) = 0 for all k ∈ Z+.

Theorem 2. For a compactly supported function f ∈ Lq(R+), 1 6 q 6 ∞ the
following properties are equivalent :

(1) f is q-stable;
(2) the system {f( · 	 k) | k ∈ Z+} is linearly independent ;
(3) the Walsh-Fourier transform of f does not have periodic zeros.

Proof. Since f has compact support and belongs to Lq(R+) with q > 1, it follows
that f also belongs to L1(R+). Let supp f ⊂ [0, 2n−1] for some positive integer n;
then f̂ ∈ En−1 (Proposition 2(c)). We observe that the linear independence of
the system {f( · 	 k) | k ∈ Z+} is equivalent to that of the finite system f( · 	 k),
k ∈ {0, 1, . . . , 2n−1 − 1}, because the other functions have supports disjoint from
the interval [0, 2n−1]. If there exist a0, . . . , a2n−1−1 such that

2n−1−1∑
k=0

akf( · 	 k) = 0 and |a0|+ · · ·+ |a2n−1−1| > 0, (3.2)

then the sequence (a0, . . . , a2n−1−1, 0, 0, . . . ) fails the lower bound in (3.1). Con-
versely, if f is not q-stable, then the function

F (a) =
∥∥∥∥2n−1−1∑

k=0

akf( · 	 k)
∥∥∥∥

Lq(R+)

takes arbitrarily small values on the sphere

S =
{
a = (a0, . . . , a2n−1−1)

∣∣∣∣ 2n−1−1∑
k=0

|ak| = 1
}
.

Indeed, the right hand side of (3.1) always holds for compactly supported functions:
if supp f ⊂ [0, 2n−1), then one can set Bq = 2(n−1)(1−1/q)‖f‖`q

. This follows
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immediately from Hölder’s inequality in the `q-metric. Combining the linearity of F
and the compactness of a unit ball in a finite-dimensional space we conclude that
there exists a point a ∈ S such that F (a) = 0, which means the linear dependence of
the integer translates. Thus, (1) ⇔ (2). Further, if some set a = (a0, . . . , a2n−1−1)
satisfies conditions (3.2), then using the Walsh-Fourier transformation we obtain

f̂(ω)
2n−1−1∑

k=0

akwk(ω) = 0 for almost all ω ∈ R+.

The Walsh polynomial w(ω) =
∑2n−1−1

k=0 akwk(ω) is not identically equal to zero;
hence there exists a dyadic interval I of range n−1 such that w(I+r) 6= 0, r ∈ Z+.
By the periodicity of w one can assume that I lies in the interval [0, 1). Since
f̂ ∈ En−1, it follows that (3.2) holds if and only if there exists a dyadic interval
I ⊂ [0, 1) of range n − 1 such that f̂(I + r) = 0 for all r ∈ Z+. Thus, (2) ⇔ (3),
which completes the proof of Theorem 2.

Corollary 1. If a function f is compactly supported and q-stable, then it is p-stable
for all p ∈ [1, q].

Indeed, a q-stable compactly supported function f belongs to all the spaces
Lp(R+), 1 6 p 6 q.

Remark 1. In the proof of Theorem 2 we have actually established the following
result: if the integer translates of a compactly supported function f ∈ Lq(R+),
1 6 q 6 ∞, are linearly dependent, then there exists a dyadic interval I ⊂ [0, 1)
consisting entirely of periodic zeros of the Walsh-Fourier transform f̂ . Furthermore,
if supp f ⊂ [0, 2n−1], then I has range n− 1. Each periodic zero ω0 ∈ [0, 1) of f̂ lies
in such an interval I.

Thus, the q-stability of a function f , 1 6 q 6 ∞, is equivalent to the linear
independence of its integer translates, and to the absence of periodic zeros of its
Walsh-Fourier transform f̂ . For this reason we shall say in what follows that a
function is stable without specifying the value of the parameter q.

We shall now deduce conditions for refinement equation (0.1) to have a stable
solution. To this end we require the concept of blocked set (Definition 2) and
the operator T defined in (0.12). We shall occasionally denote dyadic subintervals
I
(j)
k = [2−jk, 2−j(k + 1)) of [0, 1) by I

(j)
k = Id1...dj

, where 0.d1 . . . dj = 2−jk. If a
set M is blocked for a mask m, then for each dyadic interval Id1...dn−1 ⊂ M each
of the intervals I0d1...dj

and I1d1...dj
lies in M or in Nullm.

Proposition 5. Let ϕ be a compactly supported solution of refinement equa-
tion (0.1), ϕ ∈ Lq(R+) for some 1 6 q 6 ∞, and ϕ̂(0) = 1. Then the func-
tion ϕ is not stable if and only if the corresponding mask m possesses a blocked
set.

Proof. By Theorem 1, suppϕ ⊂ [0, 2n−1], therefore ϕ̂ ∈ En−1. If ϕ is not stable,
then the set of all periodic zeros of the function ϕ̂ on [0, 1) is a blocked set for m.
Indeed, the set

M0 =
{
ω ∈ [0, 1) | ϕ̂(ω + k) = 0 for all k ∈ Z+

}
.
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is a union of several dyadic intervals of range n− 1 (Remark 1). Since ϕ̂(0) = 1, it
follows that M0 does not contain the interval [0, 2−n+1). Furthermore, if ω ∈ M0,
then by formula (2.1)

m

(
ω

2
+
k

2

)
ϕ̂

(
ω

2
+
k

2

)
= 0 for all k ∈ Z+

and therefore the numbers ω/2, ω/2 + 1/2 belong to either M0 or Nullm.
Conversely, if the mask m has a blocked set M , then each ω ∈M possesses the

property ϕ̂(ω + k) = 0, k ∈ Z+. Hence ϕ̂ has a periodic zero and by Theorem 2
the function ϕ is not stable. Indeed, assume that there exists ω ∈ M such that
ϕ̂(ω + k) 6= 0 for some k. Consider sufficiently large j such that 2−j(ω + k) <
21−n. For each r ∈ {0, 1, . . . , j} we denote by xr the fractional part of the number
2−r(ω + k). Obviously, x0 = ω and xj = 2−j(ω + k). Thus, we have

ϕ̂(ω + k) = ϕ̂(2−j(ω + k))
j∏

r=1

m(2−r(ω + k)) = ϕ̂(xj)
j∏

r=1

m(xr). (3.3)

It is easy to show that if xr ∈ M , then xr+1 ∈ TM and therefore xr+1 belongs to
either Nullm or M . We also point out that xr /∈ Nullm, for otherwise it follows
by (3.3) that ϕ̂(ω + k) = 0. Thus, if xr ∈ M , then xr+1 ∈ M . On the other
hand, since x0 = ω ∈ M , it follows that xr ∈ M for all 1 6 r 6 j. This is
impossible because xj /∈M . In fact, xj = 2−j(ω+k) < 21−n; however, M does not
contain points of the interval [0, 21−n). This contradiction completes the proof of
Proposition 5.

Proposition 5 reduces the stability problem for a compactly supported refinable
function to the verification of some combinatorial fact, which can be verified, at
least theoretically, in finite time by mere brute force. In practice, however, this
procedure can take too long for large n because it requires about 22n−1

operations.
It could be more convenient to use necessary or sufficient conditions for stability.
We now formulate several such conditions. We call a point ω a symmetric zero of
a mask m if m(ω) = m(ω + 1/2) = 0.

Corollary 2. If a mask m possesses a symmetric zero, then the solution ϕ of
refinement equation (0.1) is not stable.

Indeed, if ω = 0.d1d2 . . . dn . . . is a symmetric zero, then the dyadic inter-
val Id2...dn is a blocked set.

Corollary 3. If m(1/2 − 1/2n) = 0, then the solution ϕ of refinement equa-
tion (0.1) is not stable.

Indeed, if m(1/2− 1/2n) = 0, then the interval [1− 21−n, 1) is a blocked set.

Corollary 4. If a mask m has no symmetric zeros and does not vanish at the
point ω = 1/2− 1/2n or on the interval [0, 1/4), then the solution ϕ of refinement
equation (0.1) is stable.

The proof is left to the reader.
Another useful consequence of Theorems 1 and 2 provides necessary conditions

for the existence of stable L2-solutions.
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Corollary 5. If an L2-solution of refinement equation (0.1) is stable, then

m

(
1
2

)
= 0 and

2n−1−1∑
k=0

c2k =
2n−1−1∑

k=0

c2k+1 = 1. (3.4)

Proof. Assume that m(1/2) 6= 0; then by the Strang-Fix condition (Theorem 1),
for each k ∈ Z+ we obtain

0 = ϕ̂(2k + 1) = m

(
k +

1
2

)
ϕ̂

(
k +

1
2

)
= m

(
1
2

)
ϕ̂

(
k +

1
2

)
and therefore ϕ̂(k + 1/2) = 0. This means that 1/2 is a periodic zero of ϕ̂, which
contradicts the stability (Theorem 2). Hence m(1/2) = 0 and (3.4) holds. This
proves Corollary 5.

How can one determine from the coefficients of the equation (or by its mask)
whether the solution belongs to Lq ? It is well known that in the classical situation
(for refinable functions on the real line R) and in our case (on the half-line R+) alike
this problem is not necessarily effectively soluble. For example, it is still unknown
if there exists a practically applicable criterion or an algorithm deciding whether
the solution of a refinement equation is continuous. The same situation with the
space L1(R) is similar (see, for example, [9], [10]). There exists a criterion for L2(R)
in terms of the spectral radius of a certain matrix constructed from the coefficients
of the equation (see [11]). Fortunately, if a mask satisfies condition (0.4), then this
problem in L2(R+) has a simple solution.

Proposition 6. If a mask m of refinement equation (0.1) has the following prop-
erties :

m(0) = 1, |m(ω)|2 + |m(ω + 1/2)|2 = 1 for all ω ∈ [0, 1/2),

then the equation has a solution ϕ ∈ L2(R+) and moreover,

‖ϕ‖L2(R+) 6 |ϕ̂(0)|. (3.5)

Proof. We define a function ϕ̂(ω) by equality (2.4) and prove that it belongs to
L2(R+). In this case its inverse Walsh-Fourier transform ϕ also belongs to L2(R+)
and obviously satisfies (0.1). We have

|ϕ̂(ω)|2 =
∞∏

k=1

|m(2−kω)|2.

Since |m(ω)| 6 1 for all ω, it follows that for each j,

|ϕ̂(ω)|2 6
j∏

k=1

|m(2−kω)|2, ω ∈ R+.

Consequently,∫ 2j

0

|ϕ̂(ω)|2 dω 6
∫ 2j

0

j∏
k=1

|m(2−kω)|2 dω = 2j

∫ 1

0

j∏
k=0

|m(2kω)|2 dω. (3.6)
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The function |m(ω)|2 is 1-periodic and piecewise constant with step 2−n, therefore
it is a Walsh polynomial of order 2n − 1:

|m(ω)|2 =
2n−1∑
k=0

akwk(ω).

The conditions imposed on the mask yield the equality a2k = δ0k/2, therefore

|m(ω)|2 =
1
2

+
2n−1−1∑

s=0

a2s+1w2s+1(ω).

Then
j−1∏
k=0

|m(2kω)|2 =
∑

s0+2s1+···+2j−1sj−1=r

as0 · · · asj−1wr(ω),

where for each i either si = 0 or si is odd. Hence if r = 0, then s0 = · · · = sj−1 = 0,
therefore

j−1∏
k=0

|m(2kω)|2 = 2−j +
∑
r>1

brwr(ω).

Since ∫ 1

0

wr(ω) dω = 0

for all r > 1, it follows that ∫ 1

0

j−1∏
k=0

|m(2kω)|2 = 2−j

and we see from (3.6) that ∫ 2j

0

|ϕ̂(ω)|2 dω 6 1.

Passing to the limit as j → +∞ we arrive at (3.5). The proof of the proposition is
complete.

§ 4. The construction of dyadic wavelets in L2(R+R+R+R+R+R+R+)

We recall that a function ϕ generates MRA in L2(R+) if the system {ϕ( · 	 k) |
k ∈ Z+} is orthonormal in L2(R+) and the family of subspaces

Vj = closL2(R+) span{ϕjk | k ∈ Z+}, j ∈ Z, (4.1)

forms MRA in L2(R+). If a compactly supported solution ϕ of equation (0.1)
generates MRA in L2(R+), then the function

ψ(x) =
2n−1∑
k=0

(−1)kck⊕1ϕ(2x	 k), x ∈ R+,
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is a dyadic wavelet in L2(R+). Indeed, setting

m1(ω) = −w1(ω)m(ω ⊕ 1/2)

we see that ψ̂(ω) = m1(ω/2)ϕ̂(ω/2) and the matrix(
m(ω) m(ω ⊕ 1/2)
m1(ω) m1(ω ⊕ 1/2)

)
is unitary (see [3], Theorem 5.1.1 and [5], § 3).

We now find out when solutions of refinement equation (0.1) generate MRA
in L2(R+). We start with conditions for the integer translates of the solution of
equation (0.1) to form an orthonormal basis of their linear span.

Proposition 7. Let ϕ ∈ L2(R+) be a compactly supported solution of refinement
equation (0.1) such that ϕ̂(0) = 1. Then the system {ϕ( · 	 k) | k ∈ Z+} is
orthonormal in L2(R+) if and only if the mask m has no blocked sets and satisfies
the relation

|m(ω)|2 + |m(ω + 1/2)|2 = 1 for each ω ∈ [0, 1/2). (4.2)

Proof. We set
F (ω) :=

∑
l∈Z+

|ϕ̂(ω ⊕ l)|2. (4.3)

The function ϕ has a compact support, therefore it follows by Propositions 2 and 3
that the orthonormality of the system {ϕ( · 	 k) | k ∈ Z+} in L2(R+) is equivalent
to the condition F (ω) ≡ 1.
1. Necessity. The function ϕ is stable, therefore there exist no blocked sets. Col-
lecting terms with odd and even indices in (4.3) we obtain

F (ω) = |m(ω/2)|2F (ω/2) + |m(ω/2⊕ 1/2)|2F (ω/2⊕ 1/2). (4.4)

Setting now F (ω) ≡ 1 we arrive at (4.2).
2. Sufficiency. By Proposition 5 the function ϕ is stable. By the Strang-Fix condi-
tions (Theorem 1) we obtain F (0) = 1. Let δ = inf{F (ω) | ω ∈ [0, 1)}. Since∫ 1

0

F (ω) dω = 1

(by Proposition 6), it follows that either F is identically equal to 1 or δ < 1. The
function F has period 1 and is constant on dyadic intervals of range n−1. Therefore,
either δ > 0 or F vanishes on one of these intervals. The latter is impossible for
in that case ϕ̂ possesses a periodic zero, and ϕ is unstable. Hence δ > 0. We
now set Mδ = {F (ω) = δ | ω ∈ [0, 1)}. Combining (4.2) and (4.4) we see that for
each ω ∈ Mδ the quantities ω/2 and ω/2 + 1/2 belong either to Mδ or to Nullm.
This means that the set Mδ is blocked, which contradicts the assumption. Thus,
F (ω) ≡ 1, which completes the proof.

The following proposition is an analogue of Cohen’s well-known theorem (see [13],
Theorem 6.3.1).
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Proposition 8. Let

m(ω) =
1
2

2n−1∑
k=0

ckwk(ω) (4.5)

be a Walsh polynomial such that

m(0) = 1, |m(ω)|2 + |m(ω + 1/2)|2 = 1 for each ω ∈ [0, 1/2), (4.6)

and let ϕ ∈ L2(R+) be the function defined by the formula

ϕ̂(ω) =
∞∏

j=1

m(2−jω). (4.7)

Then the system {ϕ( · 	 k) | k ∈ Z+} is orthonormal in L2(R+) if and only if m
satisfies the modified Cohen’s condition.

Proof. The function ϕ belongs to L2(R+) by Proposition 6. Using (4.7) we obtain
the equality

ϕ̂(ω) = ϕ̂(ω/2)m(ω/2),

which is equivalent to (0.1). Hence the function ϕ satisfies refinement equation (0.1)
with mask (4.5). For each ω all the multipliers in (4.7) are equal to 1 for sufficiently
large j. Indeed, the mask m is equal to 1 on I(n)

0 and 2−jω → 0 as j →∞. Hence ϕ̂
is W -continuous. We point out that by Proposition 1(a) the W -continuity of ϕ̂ also
follows from Theorem 1. Thus, with the use of Proposition 3 we see that the
orthonormality of the system {ϕ( · 	 k) | k ∈ Z+} in L2(R+) is equivalent to the
identity ∑

l∈Z+

|ϕ̂(ω ⊕ l)|2 ≡ 1. (4.8)

Assume now that (4.8) holds. Then for each ω ∈ [0, 1) there exists a quantity lω
such that

lω∑
l=0

|ϕ̂(ω ⊕ l)|2 > 1
2
.

Since ϕ̂ is W -continuous, it follows that for each ω ∈ [0, 1) there exists a dyadic
interval Iω such that

lω∑
l=0

|ϕ̂(t⊕ l)|2 >
1
4

for all t ∈ Iω. By the W -compactness of the interval [0, 1) the cover {Iω | ω ∈ [0, 1)}
contains a finite subcover {Iω1 , . . . , IωL

}. We set l0 = max{lω1 , . . . , lωL
}. Then the

inequality
l0∑

l=0

|ϕ̂(ω ⊕ l)|2 >
1
4

(4.9)

holds for all ω ∈ [0, 1).
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Let c0 = 1/(2
√
l0 + 1 ). It follows from (4.9) that for each ω ∈ [0, 1) there

exists l ∈ {0, 1, . . . , l0} such that |ϕ̂(ω⊕ l)| > c0. Since ϕ̂(0) = 1 and the function ϕ̂
is W -continuous, it follows that the set

S0 :=
{
ω ∈ [0, 1)

∣∣ |ϕ̂(ω)| > c0
}

contains a neighbourhood of zero. Consider now the following sets

S1 :=
{
ω ∈ [0, 1) \ S0

∣∣ |ϕ̂(ω ⊕ 1)| > c0
}
,

S2 :=
{
ω ∈ [0, 1) \ (S0 ∪ S1)

∣∣ |ϕ̂(ω ⊕ 2)| > c0
}
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sl0 :=
{
ω ∈ [0, 1) \

l0−1⋃
l=0

Sl

∣∣∣ |ϕ̂(ω ⊕ l0)| > c0

}
.

The set E =
⋃l0

l=0(Sl ⊕ l) is W -compact, congruent to [0, 1) modulo Z+, and
contains a neighbourhood of zero. Since the polynomial m(ω) is equal to 1 in a
neighbourhood of zero, one can choose an integer j0 such that

m(2−jω) = 1 for all j > j0, ω ∈ E. (4.10)

Combining this with (4.7) we obtain

|ϕ̂(ω)| =
j0∏

j=1

|m(2−jω)| · |ϕ̂(2−j0ω)|, (4.11)

where |ϕ̂(ω)| > c0 for ω ∈ E. We observe that |m(ω)| 6 1 for all ω. Hence it follows
by (4.10) and (4.11) that

|m(2−jω)| >
j0∏

l=1

|m(2−lω)| > c0 > 0 for 1 6 j 6 j0, ω ∈ E. (4.12)

Combining now (4.10) and (4.12) we obtain

inf
j∈N

inf
ω∈E

|m(2−jω)| > 0.

Conversely, assume that the polynomial m(ω) satisfies the modified Cohen’s condi-
tion and (4.6). Then from Lemma 1 of [6] we see that the system {ϕ( ·	k) | k ∈ Z+}
is orthonormal in L2(R+). This proves Proposition 8.

The following theorem gives necessary and sufficient conditions for solutions of
equation (0.1) to generate MRA.

Theorem 3. Suppose that equation (0.1) possesses a compactly supported L2-
solution ϕ such that its mask m satisfies conditions (4.6) and ϕ̂(0) = 1; then the
following properties are equivalent :

(a) ϕ generates MRA in L2(R+);
(b) the mask m has no blocked sets ;
(c) the mask m satisfies the modified Cohen’s condition.
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Proof. The implications (a)⇒ (b) and (a)⇒ (c) follow directly from Propositions 7
and 8. To establish the reverse implications we assume that m satisfies one of the
conditions (b) and (c). In this case it follows by Propositions 7 and 8 that the
system {ϕ( · 	 k) | k ∈ Z+} is orthonormal. We define {Vj} by formula (4.1). By
Proposition 4 we obtain

⋂
Vj = {0}. The embedding V0 ⊂ V1 follows from the fact

that ϕ satisfies (0.1). Invoking now (4.1) we obtain the inclusion Vj ⊂ Vj+1 for
each j ∈ Z. It remains to show that⋃

Vj = L2(R+),

or, in other words, (⋃
Vj

)⊥
= {0}. (4.13)

Let f ∈
(⋃

Vj

)⊥. For fixed positive ε we choose a dyadic entire function
u ∈ L1(R+) ∩ L2(R+) such that ‖f − u‖ < ε (in what follows we denote by ‖ · ‖
the norm in L2(R+)). Then for each j ∈ Z+ the orthogonal projection Pjf of the
function f to Vj possesses the property

‖Pjf‖2 = (Pjf, Pjf) = (f, Pjf) = 0.

Hence
‖Pju‖ = ‖Pj(f − u)‖ 6 ‖f − u‖ < ε. (4.14)

Consider a sufficiently large integer j such that supp û⊂ [0, 2j) and 2−jω ∈ [0, 2−n+1)
for all ω ∈ supp û. Such j exists by Proposition 2(b). We set g(ω) = û(ω)ϕ̂(2−jω)
and observe that the system {2−j/2χ(2−jk, · )}∞k=0 is an orthonormal basis L2[0, 2j ].
Hence ∑

k∈Z+

|ck(g)|2 = 2−j

∫ 2j

0

|g(ω)|2 dω, (4.15)

where

ck(g) = 2−j

∫ 2j

0

g(ω)χ(2−jk, ω) dω.

Taking into account the equality∫
R+

ϕ(2jx	 k)χ(x, ω) dx = 2−jϕ̂(2−jω)χ(2−jk, ω)

and using Plancherel’s formula we obtain

2−j/2(u, ϕjk) = 2−j

∫ 2j

0

g(ω)χ(2−jk, ω) dω.

Invoking (4.15) we see that

‖Pju‖2 =
∑

k∈Z+

|(u, ϕjk)|2 =
∫ 2j

0

|û(ω)ϕ̂(2−jω)|2 dω. (4.16)
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Recall that m(ω) = 1 on I
(n)
0 and 2−jω ∈ [0, 2−n+1) for ω ∈ supp û. Combining

this with the equality

ϕ̂(ω) =
∞∏

j=1

m(2−jω)

we see that ϕ̂(2−jω) = 1 for all ω ∈ supp û. Since supp û ⊂ [0, 2j), it follows
from (4.14), (4.16), and Proposition 1 that

ε > ‖Pju‖ = ‖û‖ = ‖u‖.

Therefore,
‖f‖ < ε+ ‖u‖ < 2ε ,

which proves (4.13) and completes the proof of Theorem 3.

Remark 2. In the construction of classical wavelets on the real line R one uses the
same condition (4.6) on the mask, while the condition on blocked sets is different.
In the classical case the mask is a trigonometric polynomial of degree n, which has
at most n zeros on the period interval. The condition in that case is as follows: the
zeros of the mask cannot form a so-called non-trivial cycle ([3], Theorem 6.3.3).
Another distinction, which is more important, is that the trigonometric poly-
nomials satisfying (4.6) are found from a special Diophantine equation. For fixed
n this equation has finitely many solutions of the smallest possible degree. They
correspond to the Daubechies wavelets ([3], § 6.4). In the dyadic case, as seen
in Theorem 3, the construction of wavelets proceeds by another scheme, which is
slightly simpler. First, one chooses an arbitrary function m(ω) on [0, 1/2) such
that it is constant on the dyadic intervals of range n and m(0) = 1. Second, this
function is extended onto R+ with the help of the equalities

|m(ω)|2 + |m(ω + 1/2)|2 = 1 and m(ω + 1) = m(ω).

Finally, one verifies (by means of a finite exhaustive search) whether m has blocked
sets. If it has none, then the corresponding refinable function generates MRA
in L2(R+) and a system of wavelets. According to Proposition 7 and Theorem 3, this
algorithm produces all possible systems of dyadic wavelets generated by compactly
supported refinable functions.

Thus, in the construction of dyadic wavelets we are free to choose an arbitrary
piecewise-constant function with step 2−n on the interval [0, 1/2), with the unique
restriction of the absence of blocked sets.

§ 5. Expansions in Walsh series and estimates of moduli of regularity

Assume that a compactly supported solution ϕ of equation (0.1) generates MRA
in L2(R+) and is normalized so that ϕ̂(0) = 1. Then by Theorem 1 and Proposi-
tion 7,

m(0) = 1, |m(ω)|2 + |m(ω + 1/2)|2 = 1 for all ω ∈ [0, 1/2) (5.1)

and

ϕ̂(ω) =
∞∏

j=1

m(2−jω), (5.2)
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where m is the mask of equation (0.1). Moreover, suppϕ⊂ [0, 2n−1]. Condi-
tions (5.1) are equivalent to the following equalities:

b0 = 1, |bl|2 + |bl+2n−1 |2 = 1, l ∈ {0, 1, . . . , 2n−1 − 1}, (5.3)

where the bl are the values of the mask m on the dyadic intervals I(n)
l . If

l = i120 + i221 + · · ·+ in2n−1, ij ∈ {0, 1},

then we set c(i1, i2, . . . , in) = bl.
For a positive integer l we define the coefficients al[m] by the binary expansion

l =
k∑

j=0

µj2j , µj ∈ {0, 1}, µk = 1, k = k(l), (5.4)

as follows:

al[m] = c(µ0, 0, 0, . . . , 0, 0), if k(l) = 0,
al[m] = c(µ1, 0, 0, . . . , 0, 0)c(µ0, µ1, 0, . . . , 0, 0), if k(l) = 1,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
al[m] = c(µk, 0, 0, . . . , 0, 0)c(µk−1, µk, 0, . . . , 0, 0) · · · c(µ0, µ1, µ2, . . . , µn−2, µn−1),

if k = k(l) > n − 1. The indices of each factor in the last product, starting with
the second, are equal to the indices of the preceding factor shifted one position
rightwards; at the free first position one puts the corresponding digit of the binary
expansion of l.

We denote by N0(n) the set of integers l > 2n−1 with binary expansion (5.4)
containing a subsequence (µj , µj+1, . . . , µj+n−1) equal to (0, 0, . . . , 0, 1). We observe
that al[m] = 0 for l ∈ N0(n) because

c(0, 0, . . . , 0, 1) = b2n−1 = 0

by (5.3). Let N(n) = N \ N0(n). In particular,

N(2) = {2j+1 − 1 | j ∈ Z+} = {1, 3, 7, 15, 31, . . . },
N(3) = {1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 21, 22, 23, 26, 27, 29, 30, 31, 42, . . . }.

Combining (5.1) and (5.2) we obtain

ϕ̂(ω) = X1−n(ω) +
∑

l∈N(n)

al[m]X1−n

(
ω 	 l

2n−1

)
, (5.5)

where X1−n = χ[0,1/2n−1). Taking the inverse Walsh-Fourier transformation and
using the equality∫

R+

X1−n

(
ω 	 l

2n−1

)
χ(x, ω) dω =

1
2n−1

χ[0,1)

(
x

2n−1

)
wl

(
x

2n−1

)
,

we can write (5.5) in the following form:

ϕ(x) =
1

2n−1
χ[0,1)

(
x

2n−1

)(
1 +

∑
l∈N(n)

al[m]wl

(
x

2n−1

))
, x ∈ R+. (5.6)

For n = 2 we obtain the Lang decomposition (0.9).
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Example 4. For n = 3 we set

b0 = 1, b1 = a, b2 = b, b3 = c,

b4 = 0, b5 = α, b6 = β, b7 = γ,

where |a|2 + |α|2 = |b|2 + |β|2 = |c|2 + |γ|2 = 1. By means of (5.6) we find a
function ϕ with the following Walsh decomposition

ϕ(x) =
1
4
χ[0,1)(y)

(
1 +

∑
l∈N(3)

al[m]wl(y)
)

=
1
4
χ[0,1)(y)(1 + aw1(y) + abw2(y) + acw3(y) + abαw5(y)

+ acβw6(y) + acγw7(y) + ab2αw10(y) + abcαw11(y) + · · · ), (5.7)

where y = x/4. If a = 0 or c = 0, then the system {ϕ( · 	 k) | k ∈ Z+} is linearly
dependent. If a and c are both non-zero, then the function ϕ generates MRA
in L2(R+). Indeed, if abc 6= 0, then condition (0.11) is fulfilled for E = [0, 1), and
if a 6= 0, b = 0, c 6= 0, then it is fulfilled for E = [0, 1/2) ∪ [3/4, 1) ∪ [3/2, 7/4).
Note that in the case of a = 1, 0 6 |b| < 1, c = 1 the function ϕ is dyadic entire
(Example 3).

The reader can find graphic illustrations related to Examples 2 and 4 in [5]
and [6].

Example 5. Consider complex numbers b0, b1, . . . , b2n−1−1 such that

b0 = 1, 0 < |bl| 6 1, 1 6 l 6 2n−1 − 1,

and then select b2n−1 , b2n−1+1, . . . , b2n−1 as

|bl+2n−1 | =
√

1− |bl|2, 0 6 l 6 2n−1 − 1.

Using discrete Walsh transform (0.6) we find the coefficients of the mask

m(ω) =
1
2

2n−1∑
k=0

ckwk(ω),

which takes the values bl on the corresponding intervals I(n)
l , 0 6 l 6 2n − 1. Since

we choose the bl distinct from zero for 0 6 l 6 2n−1 − 1, it follows that |m(ω)| > 0
for ω ∈ [0, 1/2). Consequently, the mask m satisfies the modified Cohen’s condition.
The corresponding refinable function ϕ is defined by the decomposition (5.6), where
the coefficients are uniquely determined by the parameters bl.

There exist analogues on the real line R of the dyadic wavelets generated by
refinable functions from Example 5. These are the orthogonal Daubechies wavelets
(see [3], § 6.4). In the next example, for each n > 3 we find explicitly a dyadic
entire solution of equation (0.1).
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Example 6. For arbitrary n > 3 we set

m(ω) =


1, if ω ∈ [0, 1/2− 1/2n−1) ∪ [1/2− 1/2n, 1/2),
b, if ω ∈ [1/2− 1/2n−1, 1/2− 1/2n),
0, if ω ∈ [1/2, 1/2− 1/2n) ∪ [1− 1/2n, 1),
β, if ω ∈ [1− 1/2n−1, 1− 1/2n),

where 0 6 |b| < 1, |β| =
√

1− |b|2. Then it follows from (5.2) that

ϕ̂(ω) = χ[0,1−1/2n−2)(ω) + bχ[1−1/2n−2,1−1/2n−1)(ω)

+ χ[1−1/2n−1,1)(ω) + βχ[2−1/2n−2,2−1/2n−1)(ω)

and therefore

ϕ(x) =
1

2n−1
χ[0,1)

(
x

2n−1

)(
1 +

2n−1−3∑
l=1

wl

(
x

2n−1

)
+ bw2n−1−2

(
x

2n−1

)
+ w2n−1−1

(
x

2n−1

)
+ βw2n−2

(
x

2n−1

))
.

This function ϕ satisfies (0.11) for

E =
[
0, 1− 1

2n−2

)
∪

[
1− 1

2n−1
, 1

)
∪

[
2− 1

2n−2
, 2− 1

2n−1

)
(if b 6= 0, then (0.11) holds even for E = [0, 1)). We point out that for n = 3 we
arrive at the refinable function from Example 3 again.

For arbitrary δ > 0 we define as follows the dyadic modulus of continuity of a
function ϕ:

ω(ϕ, δ) := sup
{
|ϕ(x⊕ y)− ϕ(x)|

∣∣ x, y ∈ [0, 2n−1), 0 6 y < δ
}

(see [2], § 1.2). By [2], § 5.1, if

ω(ϕ, 2−j) 6 C2−αj

for some α > 0, then there exists a constant C(ϕ, α) such that

ω(ϕ, δ) 6 C(ϕ, α)δα. (5.8)

We now find an estimate for the rate of decay of the sequence {ω(ϕ, 2−j)} for a
fixed refinable function ϕ.

Let N = 2n−1, w−l (k/N) = limx→k−0 wl(x/N), and ϕ−(k) = limx→k−0 ϕ(x). It
follows from (5.6) and the equalities

N−1∑
k=0

wl

(
k

N

)
=

N∑
k=1

w−l

(
k

N

)
= 0, l ∈ N(n),
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that
N−1∑
k=0

ϕ(k) =
N∑

k=1

ϕ−(k) = 1. (5.9)

We define two (N ×N)-matrices T0 and T1 by their entries as follows:

(T0)ij = c2(i−1)⊕(j−1) and (T1)ij = c(2i−1)⊕(j−1), (5.10)

where i, j ∈ {1, 2, . . . , N}. In particular, for n = 2 we have

T0 =
(
c0 c1
c2 c3

)
, T1 =

(
c1 c0
c3 c2

)
,

and for n = 3

T0 =


c0 c1 c2 c3
c2 c3 c0 c1
c4 c5 c6 c7
c6 c7 c4 c5

 , T1 =


c1 c0 c3 c2
c3 c2 c1 c0
c5 c4 c7 c6
c7 c6 c5 c4

 .

For the vector-valued function v(x) := (ϕ(x), ϕ(x + 1), . . . , ϕ(x + N − 1))t we
have

v(x) =

{
T0v(2x) for x ∈ [0, 1/2),
T1v(2x− 1) for x ∈ [1/2, 1).

(5.11)

Let e1 = (1, 1, . . . , 1) be an N -dimensional vector with all entries equal to 1.
By (3.4) we obtain

e1T0 = e1T1 = e1. (5.12)

We denote by E1 the orthogonal complement of the vector e1 in CN :

E1 := {u = (u1, . . . , uN )t | u1 + · · ·+ uN = 0}.

Recall that the spectral norm of an arbitrary complex (N ×N)-matrix T is defined
by the formula

‖T‖ := sup
{
‖Tu‖
‖u‖

∣∣∣ u ∈ CN , u 6= 0
}
,

where ‖u‖ is the Euclidean norm of u. Let

‖T |E1‖ := sup
{
‖Tu‖
‖u‖

∣∣∣ u ∈ E1, u 6= 0
}
.

Similarly to Proposition 4.1 in [7] (cf. [3], § 7.2), using (5.9), (5.11), and (5.12) one
can establish the following result.

Proposition 9. Let ϕ be a compactly supported solution of equation (0.1) gen-
erating MRA in L2(R+) and let T0, T1 be (N × N)-matrices with entries of the
form (5.10), where N = 2n−1. Assume that for all m ∈ N,

max
{
‖Td1Td2 · · ·Tdm

|E1‖
∣∣ dj ∈ {0, 1}, 1 6 j 6 m

}
6 Cqm, (5.13)

where 0 < q < 1 and C > 0. Then the function ϕ is W -continuous and for each
integer j > n− 1,

ω(ϕ, 2−j) 6 Cqj . (5.14)
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If the function ϕ satisfies the assumptions of Proposition 9, then the Walsh-
Fourier series (5.6) converges uniformly on [0, 2n−1). Indeed, it follows from (5.14)
that

lim
j→∞

jω(ϕ, 2−j) = 0,

and one can apply a well-known condition of uniform convergence ([1], Theo-
rem 2.3.5).

Obviously, for n = 2 the subspace E1 is one-dimensional:

E1 = {λe2 | λ ∈ C}, where e2 = (1,−1)t,

and for n = 3 the subspace E1 has the following basis:

e01 =


1

−1
1

−1

 , e02 =


1

−1
−1

1

 , e03 =


1
1

−1
−1

 .

This has, for example, the following consequences:
(1) if ϕ is as in Example 2 and 0 6 |b| < 1, then

ω(ϕ, 2−j) 6 C|b|j , (5.15)

in particular, for b = 0 the function ϕ is dyadic entire;
(2) if ϕ is as in Example 4 and a = 1, 0 6 |γ| < 1, then

ω(ϕ, 2−j) 6 C|γ|j , (5.16)

in particular, for γ = 0 the function ϕ is dyadic entire.
Using decompositions (0.9) and (5.7) one can easily verify that estimates (5.15)

and (5.16) are asymptotically sharp (see Examples 4.3 and 4.4 in [7]). We also point
out that under the assumptions of Example 3 the left hand side of inequality (5.13)
vanishes (and the same holds for an arbitrary dyadic entire solution ϕ of (0.1)).

Remark 3. For a fixed solution ϕ of refinement equation (0.1) we denote by αϕ the
least upper bound of the quantities α > 0 satisfying (5.8). Then

αϕ = − log2 ρ̂, (5.17)

where ρ̂ = ρ̂(T0,T1) is the joint spectral radius of the operators T0 and T1 defined
in CN by their matrices T0, T1 and restricted to the subspace V = span{v(x)−v(y) |
x, y ∈ [0, 1)} (v is the vector-valued function from (5.11)). The proof is the same as
in the classical case (see [10], [11]) and we leave it out. In particular, the function ϕ
is W -continuous if and only if ρ̂ < 1. Formula (5.17) makes it possible to find
the precise value of the Hölder exponent. However, its practical implementation is
sometimes difficult because it involves the computation of the joint spectral radius.
Usually, this problem can be effectively solved only for small dimensions of opera-
tors. In the above examples we have, in fact, computed the joint spectral radius ρ̂
for several small values of n.
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Thus, for an arbitrary refinement equation it is possible, theoretically at least,
to compute the exponent of regularity of the solution. Hence it is also possible to
find the exponent of regularity of the corresponding wavelets. One can put the
question of the magnitude of this exponent for fixed n. It is well known that for
classical compactly supported wavelets the exponent of regularity is always finite
and, moreover, is bounded above by the length of the support of the correspond-
ing refinable function. The straightforward analogue of this fact does not hold for
dyadic wavelets. For example, dyadic refinable functions can be entire (Examples 1
and 6). Nevertheless, it turns out that the following alternative takes place for
dyadic refinable functions: either a function is dyadic entire or it has a finite regu-
larity. The finite exponent of regularity is bounded above not by the length of the
support, but by the smallest non-zero value of the modulus of the mask. We defer
the precise statement to § 7. Before this, we characterize all dyadic entire refinable
functions.

§ 6. Dyadic entire solutions of refinement equations

In the next result we establish conditions for the location of zeros of the mask
ensuring that the solution ϕ of equation (0.1) is dyadic entire.

Proposition 10. Let ϕ be a compactly supported L2-solution of refinement equa-
tion (0.1) and let m be its mask. Assume that ϕ̂(0) = 1. Then the function ϕ is
not dyadic entire if and only if there exists a finite sequence {dk}N

k=1, N 6 2n−1,
dk ∈ {0, 1}, such that

(a) d1 = · · · = dn−1 = 0, dn = 1;
(b) there exists an integer j, n − 1 6 j 6 N − 1, such that dj−s = dN−s for

s = 0, . . . , n− 2 and dj−n+2 . . . dN−n+1 = 0;
(c) m(0.dk+1 . . . dk+n) 6= 0 for all k = 0, . . . , N − n.

Proof. Let {dk}N
k=1 be a sequence satisfying conditions (a)–(c), and let

β = 0.d1 . . . dj−n+1(dj−n+2 . . . dN−n+1)

be a dyadic number with period (dj−n+2 . . . dN−n+1). Since m ∈ En and m(0) = 1,
it follows that for each r ∈ N

ϕ̂(2rβ) =
∞∏

k=1

m(2r−kβ) =
∞∏

k=1

m(d1 . . . dr−k.dr−k+1 . . . dr−k+n . . . )

=
∞∏

k=1

m(0.dr−k+1 . . . dr−k+n) 6= 0

(we set di = 0 for i 6 0, take into account the periodicity of m, and use the
following property: each string of length n in the binary expansion of β coincides
with some string of length n in the sequence {dk}N

k=1). Therefore, the support of
the Walsh-Fourier transform ϕ̂ is not compact. From Proposition 2(b) we now see
that the function ϕ is not dyadic entire.

The other way round assume that a compactly supported L2-solution ϕ of equa-
tion (0.1) is not a dyadic entire function. Then ϕ ∈ L1(R+) and by Proposition 2, (c)
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the support supp ϕ̂ is not compact. Consider an arbitrary number ω > 22n−1
such

that ϕ̂(ω) 6= 0. Its binary expansion can be written in the following form:

ω =
l∑

j=0

ω−j−12j +
∞∑

j=1

ωj2−j , ωj ∈ {0, 1}, ω−l−1 = 1, l > 2n−1.

From (0.5) it follows that m(2−sω) 6= 0 for all s ∈ N. Arguing as above and using
the inclusion m ∈ En we show that the mask m does not vanish at the following
points:

γl = 0.0 . . . 0ω−l−1, γl−1 = 0.0 . . . ω−lω−l−1, . . . , γ0 = 0.ω−n . . . ω−2ω−1

Each dyadic number γs (s = 0, . . . , l) has exactly n significant digits in its binary
expansion. Since l > 2n−1, it follows that there exist two numbers among γ0, . . . , γl

starting with the same sequence of n − 1 digits. Denote by r the smallest integer
possessing the following property: for some k ∈ N the first n − 1 digits of the
numbers γr and γr−k coincide. Then the sequence 0, . . . , 0, ω−l−1, . . . , ω−r is as
required and the proof of Proposition 10 is complete.

Proposition 10 reduces the question whether the solution of refinement equa-
tion (0.1) is dyadic entire to a mere exhaustive search among all binary sequences
of length 2n−1 − n+ 1.

Corollary 6. If a compactly supported L2-solution ϕ of refinement equation (0.1)
is dyadic entire, then

supp ϕ̂ ⊂
[
0, 22n−1]

.

Corollary 7. If a mask m of refinement equation (0.1) is equal to zero identically
on the interval [2−r, 2−r+1) for some r ∈ N, then the solution ϕ is dyadic entire.

Proof. Since the mask m is equal to 1 on all the intervals [k, k + 2−n), k ∈ Z+,
it follows that 1 6 r 6 n. Hence m(ω) = 0 whenever the binary expansion of ω
starts with the sequence 0.0 . . . 01 (r consecutive zeros followed by one). Therefore,
there exists for the mask no sequence {dk}N

k=1 satisfying conditions (a)–(c) from
Proposition 10.

In particular, if a mask is equal to zero on the interval [1/2, 1), then the solution ϕ
of equation (0.1) is dyadic entire. We also point out that if

m(ω) =

{
1 for ω ∈ [0, 2−r),
0 for ω ∈ [2−r, 2−r+1),

where r ∈ N, r 6 n, then ϕ(x) = 21−rχ[0,2r−1)(x) regardless of the values of the
mask at all other points.

§ 7. An alternative for smooth refinable functions

Thus, for an arbitrary refinement equation one can decide by means of a finite
exhaustive search whether the solution is dyadic entire. It turns out that if a
solution ϕ of equation (0.1) is not dyadic entire, then it has a finite regularity.
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Moreover, the Hölder exponent αϕ has an effective upper estimate by the smallest
non-zero value of the modulus of the mask, and this upper bound is sharp.

The modulus of the mask |m(ω)| is a piecewise constant function with step 2−n,
therefore it can take 2n values at most. One of these values is zero because by the
modified Strang-Fix condition (Theorem 1) the mask must vanish on the period
interval. Let am be the smallest non-zero value of the modulus of the mask m:

am = min
{
|m(ω)|

∣∣ ω ∈ R+, m(ω) 6= 0
}
.

Since the mask has period 1 and is constant on the dyadic intervals of range n,
the value of am coincides with the smallest non-zero number in the set {|m(2−nk)|,
k = 0, . . . , 2n−1}.

Theorem 4. The following alternative holds for each compactly supported L2-solu-
tion ϕ of equation (0.1) satisfying ϕ̂(0) = 1:

(1) ϕ is a dyadic entire function ;
(2) am < 1 and αϕ 6 − log2 am.

Proof. Assume that ϕ is not a dyadic entire function; then by Proposition 2(c) the
support of the function ϕ̂ is not compact. This means that there exists arbitrarily
large ω for which ϕ̂(ω) 6= 0. If we define a positive integer k by the inequalities
2k 6 ω < 2k+1 and take into account the equalitiesm(2−jω) = 1 for all j > n+k+1,
then we obtain

ϕ̂(ω) =
∞∏

j=1

m(2−jω) =
n+k∏
j=1

m(2−jω). (7.1)

Since ϕ̂(ω) 6= 0, for each j = 1, . . . , n + k the quantity |m(2−jω)| is non-zero and
is therefore at least am. Substituting the inequality |m(2−jω)| > am in (7.1) we
obtain

|ϕ̂(ω)| > (am)n+k. (7.2)

If we now assume that am > 1, then there exists by (7.2) arbitrarily large ω such
that |ϕ̂(ω)|2 > 1. However, since the function |ϕ̂(ω)|2 is constant on the dyadic
intervals of range n − 1, it is not integrable on the half-line R+. This means
that ϕ̂ /∈ L2(R+), and therefore ϕ /∈ L2(R+), which contradicts the assumption.

Thus, am < 1. Substituting the inequality k 6 log2 ω in (7.2) we obtain the
inequality |ϕ̂(ω)| > (am)n/ω− log2 am . On the other hand |ϕ̂(ω)| 6 (1/2)ω(ϕ, 2/ω)
for each ω > 0 (see [2], Ch. 9, exercise 9.12). Hence there exists a positive constant C
such that |ϕ̂(ω)| 6 C/ωαϕ for all ω > 1. Therefore, αϕ 6 − log2 am and the proof
of Theorem 4 is complete.

Remark 4. There exist infinitely smooth functions in R+ that are not dyadic entire.
For refinable functions, however, this situation is impossible by Theorem 4. The
estimate αϕ 6 − log2 am is sharp for refinable functions. It is attained, for instance,
on the Lang functions (Example 2). By contrast with the situation on the real
line R, where for each n there exists a unique refinable function of maximum
smoothness (the cardinal B-spline of order n − 1; see, for instance, [12], [13]),
the regularity of solutions of equation (0.1) is unbounded for fixed n. However, it is



Wavelets and refinable functions on a half-line 1557

bounded for functions that are not dyadic entire for fixed value of am. This bound
is always attained for fixed n and am on compactly supported dyadic refinable
functions.

Thus, for dyadic wavelets we can verify in finite time whether a wavelet function
is dyadic entire. If not, then we can find an upper estimate of its exponent of
regularity. Another useful consequence of Theorem 4 concerns the case when the
modulus of the mask takes only two values: 0 and 1, in particular, if the mask is
the indicator function of several dyadic intervals of range n.

Corollary 8. If the modulus of the mask of equation (0.1) takes values 0 and 1,
then the L2-solution of this equation is dyadic entire.

Proposition 10 provides an algorithm testing whether refinable functions belong
to the class of dyadic entire functions. For masks with modulus taking only two val-
ues this algorithm actually gives one a criterion for the solubility of the refinement
equations in L2(R+) (Corollary 8).

Using Theorem 3 we obtain the following result.

Corollary 9. If a function ϕ generates MRA in L2(R+), and the modulus of its
mask takes values 0 and 1, then this function and the corresponding wavelets are
dyadic entire.
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