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Biorthogonal dyadic wavelets on R

Yu. A. Farkov

A compactly supported function ¢ € L?(Ry) is called a scaling function if it satisfies
an equation of the type
2n 1
@(x) = Z Ck(p(ZI © k')v z € Ry, (1)
k=0
where the ¢, are complex coefficients and © is the dyadic subtraction on the positive
half-line Ry (about this operation and some other concepts used below see [1], [2]). Using
the Walsh—Fourier transform, we get from (1) that g(w) = m(w/2)p(w/2), where m(w) =
(1/2) Zilgl crwi(w) is a Walsh polynomial called the mask of ¢. A subset M of [0,1) is
said to be a blocked set for the mask m if it is a union of dyadic intervals of rank n—1, does
not contain the interval [0,27""!), and is such that each point in (M/2) U (1/2 + M/2)
and not in M is a zero of m. The following is proved in [2].

Proposition 1. If a scaling function ¢ satisfies the equation (1) and $(0) = 1, then
supp ¢ C [0,2" 7Y and P(w) = [152, m(277w). Moreover, the system {p(- ©k) | k € Z4}

is linearly independent if and only if the mask m has no blocked sets.

Let ¢ and @ be two scaling functions in L?(R.) with masks

271 271
1 ~ 1 -
m(w) = 3 E crwg(w), m(w) = 3 E crwg (w),
k=0 k=0

respectively, such that $(0) = @(0) = 1. We consider the following systems of integral
translates of ¢ and @:

{p(-0k) [keZs},  {o(-Ok)|keZi}. (2)

The polynomial m*(w) = m(w)m(w) is the mask of the scaling function ¢*(x) =

p(t © x)p(t)dt. As in Proposition 2.5.2 in [3], if the systems (2) are biorthonormal
Ry
in L*(R4) then

m"(w) +m” (er%) =1 forallweR,. (3)

By Proposition 1, this implies that if one of the masks m, m, m™ has a blocked set, then
the systems (2) are not biorthonormal in L*(R).

Theorem 1 (cf. [3], Theorem 2.5.6). Let m™ satisfy the condition (3). Then the sys-
tems (2) are biorthonormal in L*(Ry) if and only if there exists a W-compact set E
congruent to [0,1) modulo Z4., containing a neighbourhood of zero, and such that
inf inf |m(29w)| > 0, inf inf |m(27w)| > 0. (4)
JEN WEE JEN WEE
Note that if m™(w) # 0 for all w € [0,1/2), then the inequalities (4) hold for E = [0, 1).
A multiresolution analysis (MRA) in L?*(Ry) is a sequence of closed subspaces
V; ¢ L*(Ry), j € Z, satisfying the following conditions: (i) V; C Vjy1 for all j € Z;
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(ii) the union |JV; is dense in L*(R1) and (V; = {0}; (iii) f(-) € V; == f(2-) € Vi1
for all j € Z; (iv) f(-) € Vo = f(-® k) € Vp for all k € Z; (v) there exists a function
¢ € L*(Ry) such that the system {¢(-© k) | k € Z+} is a Riesz basis in Vj.

For any function f € L?(Ry), let f;x(x) = 27/ f(220k), j € Z, k € Z. Furthermore,
we say that a function ¢ € L*(Ry) generates an MRA in L*(R.) if the functions o(-Sk),
k € Z,, form a Riesz system in L?(Ry) and, in addition, the family of subspaces V; =
span{p;r | k € Z1}, j € Z, is an MRA in L*(R;).

Given two MRAs {V;} and {V;} in LQ(R+) we say that two functions ¢ € Vi and
1/} € V; form a biorthogonal wavelet pairif 1 L Vo, J 1 Vb, and (w( - @ k), 1;( - D l)) = Ok,
k,l € Z4. As usual, .#™ denotes the matrix conjugate to .# and I is the identity matrix.

Proposition 2. Let {V;} and {V;} be two MRAs generated by scaling functions ¢ and
@, respectively, and suppose that the systems (2) are biorthonormal. If the matrices

= () maim) A= () i)

satisfy the condition MM =1 for almost all w € [0,1), then v and 7;5 giwen by the
equalities

D) = mi(@/2)8w/2),  Dw) = i (w/2) Blw/2) ()

form a biorthogonal wavelet pair. In particular, we can choose
mi(w) = —wi(w) m(w & 1/2), mi(w) = —wi(w) m(w & 1/2). (6)

Theorem 2 (cf. [3], Theorem 2.7.5). Let {V;} and {V;} be two MRAs generated by scaling
functions ¢ and @, respectively, whose masks satisfy the condition (3) and the conditions

m(1/2) =m (1/2) =0, and let ¢ and 1 be defined by (5) and (6). Then each of the systems
{¢Yjr} and {wj,k} is a frame in L*(Ry). Moreover, if the systems (2) are biorthonormal,
then v and 1 form a biorthogonal wavelet pair and each of the systems {1} and {1b; 1}
is a Riesz basis in L*(Ry).

Similar results can be proved for biorthogonal wavelet systems on the Cantor group
and the Vilenkin groups (the orthogonal case was studied in [4], [5]).
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