Biorthogonal dyadic wavelets on \mathbb{R}_+

Yu. A. Farkov

A compactly supported function $\varphi \in L^2(\mathbb{R}_+)$ is called a *scaling function* if it satisfies an equation of the type

$$\varphi(x) = \sum_{k=0}^{2^n - 1} c_k \varphi(2x \ominus k), \qquad x \in \mathbb{R}_+, \tag{1}$$

where the c_k are complex coefficients and \ominus is the dyadic subtraction on the positive half-line \mathbb{R}_+ (about this operation and some other concepts used below see [1], [2]). Using the Walsh–Fourier transform, we get from (1) that $\widehat{\varphi}(\omega) = m(\omega/2)\widehat{\varphi}(\omega/2)$, where $m(\omega) = (1/2)\sum_{k=0}^{2^n-1} c_k w_k(\omega)$ is a Walsh polynomial called the mask of φ . A subset M of [0, 1) is said to be a blocked set for the mask m if it is a union of dyadic intervals of rank n-1, does not contain the interval $[0, 2^{-n+1})$, and is such that each point in $(M/2) \cup (1/2 + M/2)$ and not in M is a zero of m. The following is proved in [2].

Proposition 1. If a scaling function φ satisfies the equation (1) and $\hat{\varphi}(0) = 1$, then $\operatorname{supp} \varphi \subset [0, 2^{n-1}]$ and $\hat{\varphi}(\omega) = \prod_{j=1}^{\infty} m(2^{-j}\omega)$. Moreover, the system $\{\varphi(\cdot \ominus k) \mid k \in \mathbb{Z}_+\}$ is linearly independent if and only if the mask m has no blocked sets.

Let φ and $\widetilde{\varphi}$ be two scaling functions in $L^2(\mathbb{R}_+)$ with masks

$$m(\omega) = \frac{1}{2} \sum_{k=0}^{2^{n}-1} c_{k} w_{k}(\omega), \qquad \widetilde{m}(\omega) = \frac{1}{2} \sum_{k=0}^{2^{\tilde{n}}-1} \widetilde{c}_{k} w_{k}(\omega),$$

respectively, such that $\widehat{\varphi}(0) = \widehat{\widetilde{\varphi}}(0) = 1$. We consider the following systems of integral translates of φ and $\widetilde{\varphi}$:

$$\{\varphi(\cdot \ominus k) \mid k \in \mathbb{Z}_+\}, \qquad \{\widetilde{\varphi}(\cdot \ominus k) \mid k \in \mathbb{Z}_+\}.$$
(2)

The polynomial $m^*(\omega) = m(\omega) \overline{\widetilde{m}(\omega)}$ is the mask of the scaling function $\varphi^*(x) = \int_{\mathbb{R}_+} \varphi(t \ominus x) \overline{\widetilde{\varphi}(t)} dt$. As in Proposition 2.5.2 in [3], if the systems (2) are biorthonormal in $L^2(\mathbb{R}_+)$ then

$$m^*(\omega) + m^*\left(\omega + \frac{1}{2}\right) = 1 \quad \text{for all } \omega \in \mathbb{R}_+.$$
 (3)

By Proposition 1, this implies that if one of the masks m, \tilde{m}, m^* has a blocked set, then the systems (2) are not biorthonormal in $L^2(\mathbb{R}_+)$.

Theorem 1 (cf. [3], Theorem 2.5.6). Let m^* satisfy the condition (3). Then the systems (2) are biorthonormal in $L^2(\mathbb{R}_+)$ if and only if there exists a W-compact set E congruent to [0,1) modulo \mathbb{Z}_+ , containing a neighbourhood of zero, and such that

$$\inf_{j\in\mathbb{N}}\inf_{\omega\in E}|m(2^{-j}\omega)|>0,\qquad\inf_{j\in\mathbb{N}}\inf_{\omega\in E}|\widetilde{m}(2^{-j}\omega)|>0.$$
(4)

Note that if $m^*(\omega) \neq 0$ for all $\omega \in [0, 1/2)$, then the inequalities (4) hold for E = [0, 1). A multiresolution analysis (MRA) in $L^2(\mathbb{R}_+)$ is a sequence of closed subspaces $V_j \subset L^2(\mathbb{R}_+), j \in \mathbb{Z}$, satisfying the following conditions: (i) $V_j \subset V_{j+1}$ for all $j \in \mathbb{Z}$;

AMS 2000 Mathematics Subject Classification. Primary 42C40; Secondary 43A70. DOI 10.1070/RM2007v062n06ABEH004494.

(ii) the union $\bigcup V_j$ is dense in $L^2(\mathbb{R}_+)$ and $\bigcap V_j = \{0\}$; (iii) $f(\cdot) \in V_j \iff f(2 \cdot) \in V_{j+1}$ for all $j \in \mathbb{Z}$; (iv) $f(\cdot) \in V_0 \implies f(\cdot \oplus k) \in V_0$ for all $k \in \mathbb{Z}_+$; (v) there exists a function $\varphi \in L^2(\mathbb{R}_+)$ such that the system $\{\varphi(\cdot \oplus k) \mid k \in \mathbb{Z}_+\}$ is a Riesz basis in V_0 .

For any function $f \in L^2(\mathbb{R}_+)$, let $f_{j,k}(x) = 2^{j/2} f(2^j x \ominus k)$, $j \in \mathbb{Z}$, $k \in \mathbb{Z}_+$. Furthermore, we say that a function $\varphi \in L^2(\mathbb{R}_+)$ generates an MRA in $L^2(\mathbb{R}_+)$ if the functions $\varphi(\cdot \ominus k)$, $\underline{k \in \mathbb{Z}_+}$, form a Riesz system in $L^2(\mathbb{R}_+)$ and, in addition, the family of subspaces $V_j =$ span $\{\varphi_{j,k} \mid k \in \mathbb{Z}_+\}$, $j \in \mathbb{Z}$, is an MRA in $L^2(\mathbb{R}_+)$.

Given two MRAs $\{V_j\}$ and $\{\widetilde{V}_j\}$ in $L^2(\mathbb{R}_+)$, we say that two functions $\psi \in V_1$ and $\widetilde{\psi} \in \widetilde{V}_1$ form a biorthogonal wavelet pair if $\psi \perp \widetilde{V}_0$, $\widetilde{\psi} \perp V_0$, and $(\psi(\cdot \oplus k), \widetilde{\psi}(\cdot \oplus l)) = \delta_{k,l}$, $k, l \in \mathbb{Z}_+$. As usual, \mathscr{M}^* denotes the matrix conjugate to \mathscr{M} and I is the identity matrix.

Proposition 2. Let $\{V_j\}$ and $\{\widetilde{V}_j\}$ be two MRAs generated by scaling functions φ and $\widetilde{\varphi}$, respectively, and suppose that the systems (2) are biorthonormal. If the matrices

$$\mathscr{M} = \begin{pmatrix} m(\omega) & m(\omega \oplus 1/2) \\ m_1(\omega) & m_1(\omega \oplus 1/2) \end{pmatrix}, \qquad \widetilde{\mathscr{M}} = \begin{pmatrix} \widetilde{m}(\omega) & \widetilde{m}(\omega \oplus 1/2) \\ \widetilde{m}_1(\omega) & \widetilde{m}_1(\omega \oplus 1/2) \end{pmatrix}$$

satisfy the condition $\mathscr{M}\widetilde{\mathscr{M}}^* = I$ for almost all $\omega \in [0,1)$, then ψ and $\tilde{\psi}$ given by the equalities

$$\widehat{\psi}(\omega) = m_1(\omega/2)\,\widehat{\varphi}(\omega/2), \qquad \widehat{\widetilde{\psi}}(\omega) = \widetilde{m}_1(\omega/2)\,\widehat{\widetilde{\varphi}}(\omega/2)$$
(5)

form a biorthogonal wavelet pair. In particular, we can choose

$$m_1(\omega) = -w_1(\omega) \overline{m(\omega \oplus 1/2)}, \qquad \widetilde{m}_1(\omega) = -w_1(\omega) \overline{\widetilde{m}(\omega \oplus 1/2)}.$$
(6)

Theorem 2 (cf. [3], Theorem 2.7.5). Let $\{V_j\}$ and $\{\widetilde{V}_j\}$ be two MRAs generated by scaling functions φ and $\widetilde{\varphi}$, respectively, whose masks satisfy the condition (3) and the conditions $m(1/2) = \widetilde{m}(1/2) = 0$, and let ψ and $\widetilde{\psi}$ be defined by (5) and (6). Then each of the systems $\{\psi_{j,k}\}$ and $\{\widetilde{\psi}_{j,k}\}$ is a frame in $L^2(\mathbb{R}_+)$. Moreover, if the systems (2) are biorthonormal, then ψ and $\widetilde{\psi}$ form a biorthogonal wavelet pair and each of the systems $\{\psi_{j,k}\}$ and $\{\widetilde{\psi}_{j,k}\}$ is a Riesz basis in $L^2(\mathbb{R}_+)$.

Similar results can be proved for biorthogonal wavelet systems on the Cantor group and the Vilenkin groups (the orthogonal case was studied in [4], [5]).

Bibliography

- F. Schipp, W. R. Wade, and P. Simon, *Walsh series*, An introduction to dyadic harmonic analysis, Adam Hilger, Bristol 1990.
- [2] В. Ю. Протасов, Ю. А. Фарков, Матем. сб. 197:10 (2006), 129–160; English transl., V. Yu. Protasov and Yu. A. Farkov, Sb. Math. 197:10 (2006), 1529–1558.
- [3] И. Я. Новиков, В. Ю. Протасов, М. А. Скопина, *Teopus всплесков*, Физматлит, Москва 2006. [I. Ya. Novikov, V. Yu. Protasov, and M. A. Skopina, *The theory of wavelets*, Fizmatlit, Moscow 2006.]
- [4] W. C. Lang, Houston J. Math. 24:3 (1998), 533-544.
- [5] Ю. А. Фарков, Изв. РАН. Сер. матем. 69:3 (2005), 193–220; English transl., Yu. A. Farkov, Izv. Math. 69:3 (2005), 623–650.

Yu. A. Farkov

Russian State Geological Prospecting University *E-mail*: farkov@list.ru Presented by V. M. Tikhomirov Accepted 09/OCT/07 Translated by YU. A. FARKOV