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Multiresolution Analysis and Wavelets
on Vilenkin Groups

Yury A. Farkov

Abstract: This paper gives a review of multiresolution analysis anchpactly sup-
ported orthogonal wavelets on Vilenkin groups. The Str&igeondition, the parti-
tion of unity property, the linear independence, the sifgbihnd the orthonormality
of "integer shifts” of the corresponding refinable functicere considered. Necessary
and sufficient conditions are given for refinable functiomgénerate a multiresolu-
tion analysis in thé.2 -spaces on Vilenkin groups. Several examples are provied t
illustrate these results.
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1 Introduction

I T is well-known that the Walsh system is the group of charactérthe Cantor
group (the dyadic or 2-series local field). It was discoveretependently by
Fine [1] and Vilenkin [2]. The latter actually introduced ade class of locally
compact abelian groups (now called Vilenkin groups) andcvimcludes the Can-
tor group as a special case. The books [3—6] are the mairerefes to harmonic
analysis on these groups. See also [7] for applicationseofCthntor group to the
theory of lacunary trigonometric series. Orthogonal coatlyssupported wavelets
on the Cantor group (and relevant wavelets on the positilidina R ) are studied
in [8—-11]. Decimation by an integer different from 2 is discussed in [12—14], but
construction for a general is not completely treated. Here we review some of the

elements of that construction and give an approach tgthe3 case in a concrete
fashion.
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We define Vilenkin's groufs as the group of sequences

X= (XJ) = ("’70707Xk7xk+1uxk+27'°')7

wherex; € {0,1,...,p—1} for j € Z andx; = 0 for j < k=k(x). The group
operation orG is denoted byp and is defined as coordinatewise addition modulo
p:

(zj) = (X)) ® (yj) <= z; =Xj+Yyj(modp) for jeZ,

and topology inGis introduced via the complete system of neighbourhoodeaf z
U ={(xj)) eG|xj=0forj<I}, l|€Z,

(e.g., [3], ).Put) = Up and denote by the inverse operation @ (so, if 8 is the

zero sequence, thee x = 6).

The Lebesgue space8(G),1 < q < =, are defined by the Haar measyren
Borel's subsets o6 normalized byu(U) =1 (see, e.g., [3]). Denote Ky, -) and
|| - || the inner product and the norm irf(G) respectively.

The group dual t@ is denoted byG* and consists of all sequences of the form

W= (wj) = ("'70707(’4(704(+17(q<+27”')7

wherew; € {0,1,...,p—1} for j € Z andw; = 0 for j < k=Kk(w). The operations
of addition and subtraction, the neighbourhoddl '} and the Haar measuye*
for G* are introduced as above f@. Each character ot can be defined by the

formula
27
XX w)=exp| — Y xjw-_1|, xe G,
(p ,22 o )

for somew € G* (see, e.g., [5]).

Take in G a discrete subgroupl = {(xj) € G| x; =0 for j > 0} and define
an automorphisnA € AutG by the formula(Ax); = Xj;1. It is easy to see that
the quotient grougH /A(H) containsp elements and the annihilatoH* of the
subgroupH consists of all sequencée;) € G* which satisfyw; = 0 for j > 0.

We defineamap : G— R, by

A)=Sxpl,  x=(x)€G.
JEL

The image oH underA is the set of non-negative integevs(H) = Z .. For every
a € Zy, lethy) denote the element ¢i such thatA (hy)) = a. For G*, we de-
fine the mapr* : G* — R, , the automorphisnB € AutG*, the subgrougJ* and
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the elementsg) of H-+ similarly to A,A,U and hiq) respectively. We note that
X(Ax, w) = X (x,Bw) forall x € G, w € G*.

Thegeneralizied Walsh functiorier G can be defined by
WU(X):X(X7%CI])7 GEZ+7XEG-

These functions are continuous Grand satisfy the orthogonality relations

| We OWBTIA(0 = g, @.Be e,

whereéaf is the Kronecker delta. It is well-known that the systé, } is com-

plete inL=(U). The corresponding system f@&* is defined by
W;(&)):X(h[a],(x)), GEZJ,_,O)EG*.

The system{W; } is an orthonormal basis &f(U*).

For any positive intergen let £,(G) denotes the collection of all functions on
G which are constant on

Un7or = Afn(h[a]) @Ain(u)

for eacha € Z.. The classs,(G*) is defined in a similar way.

As usial, we denote b§7 the Fourier transform off. According to Proposition
2 in [14] (see also [5]).the following properties hold:

(@) if feLYG)N&(G), then supd cU*;
(b) if felLY(G) and supd C U_p, thenf € &,(G*).

In the sequellg stands for the characteristic function of a suliseif G.

2 Stability of Refinable Functions

Let L2(G) be the set of all compactly supported functions. #iG). We say that a
function € L2(G) is arefinable functionif it satisfies an equation of the type
p-1
a

p(X)=p Zoaafl’(AX@ hiay)- (1)
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The functional equation (1) is called tmefinement equation The generalizied

Walsh polynomial
p"-1

m(w) = ZO agWg (w) (2)

is called themaskof equation (1) (or the mask of its solutid).

EXAMPLE 1. Ifag=---=a,_1=1/p anda, =0foralla > p, then a solution
of equation (1) isp = 1, ,; in particular, the Haar functionp = 1 satisfies this
equation whem = 1 (compare with [12], Remark 1.3, [15]).

The sets
Ups:=B "(wg)®B"(U"), 0<s<p'-1,

are cosets of the subgrop "(U*) in the groupU*. For every 0< a < p"—1
the Walsh functionVj(-) is constant on eac;s. Thus, the maskn belongs to
én(GY).

It was noted in [12] that the coefficients of equation (1) &lated to the values
bs of mon cosetd); s by means of the direct and the inverse Vilenkin-Chrestenson
transforms:

1Pt
P&
p"-1
bs= % aaW; (B "wyg), 0<s<p'—1 (4)
a=0

They can be realized by the fast algorithms (see, for instaf@] p.463, [16]).
Thus, any choice of the valuesiwfonU ; defines also the coefficients of equation

(1).
THEOREM 1. Let ¢ € L2(G) be a solution of the refinement equatig), and
let$(6) = 1. Then

p-1
> ar=1 suppp C Uy,
a=0

and

d(w) = [TmB w).
1
Moreover, the following properties are true:

1. §(h*) = Oforall h* € H1\ {6} (the modified Strang-Fix conditiyn
2. Shen ¢ (x@® h) = 1for almost every x G (the partition of unity property
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A function f € L2(G) is said to bestableif there exist positive constanfs and
Bo such that

B arons

d 1/2
< Bo(azo\aﬂz)

for each sequencéa, } € £2. In other words, a functiorf is stable inL?(G) if
functionsf(-©h), h € H, form a Riesz system ib?(G). Note also, that a function
f is stable inL?(R ) with constantshg andBy if and only if

Ag < z 1f(weh)|?<Byg fora.e. weG* (5)
htecHL

(the proof of this fact is quite similar to that of Theorem .Z.in [17]). We say that
afunctiong: G* — C has gperiodic zeraat a pointw € G* if g(w® h*) = 0 for all
h* € HL.

THEOREM 2. For any f € L2(G) the following properties are equivalent

(a) f is stable in B(G);
(b) {f(-eh)|heH}is alinearly independent system
(c) the Fourier transform of f does not have periodic zeros

PROOF The implication (a)= (b) follows from the well-known property of the
Riesz systems (see, e.g., [17], Theorem 1.1.2). Our neixhdtathat f € L1(G),
since f has compact support ande L?(G). Let us choose a positive integer
such that supp C U;_,. As noted in Introduction, thef € én-1(G*). Besides, if
A(h) > p™,

pu{suppf(-eh)NU;_n} =0.
Therefore, the linearly independence of the systdifi© h)|h € H} is equivalent

to that of the finite systenff(- & hg))|a =0,1,...,p" ! — 1}. Further, if some
vector(ay, ..., ay-1_1) satisfies the conditions

pn7171
Y aaf(-©a)=0 and [ao|++|an1 4|>0, (6)
a=0

then using the Fourier transform we obtain

R Pl
f(w) z agW; (w) = 0.

a=0
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The Walsh polynomial

n-1_q
W (@) = pzo 2V, ()

is not identically equal to zero; hence, amchﬂ}gLs, 0<s< p”‘l —1, there exists

a set (denote it by) for whichW*(X & h*) # 0, h* € HL. Sincef € &, 1(G"), it
follows that (6) holds if and only if there exists a 3et= U X C U*, such that

n—1s!
f(X®h*) =0 for allh* € H-. Thus, (b} (c).
It remains to prove that (¢} (a). Suppose that does not have periodic zeros.
Then

Flw= Y [flwoh)p?
h*eH+

is positive andH--periodic function. Moreover, sincé ¢ én-1(G*), we see that
F is constant on eact) ; ;0 <s< p"~1—1. Therefore (5) is satisfied and so
Theorem 2 is established (note that in [14] this theorem wagegul in a different

way).
LetM cU* and let

p—1
oM = {B‘lam +B Hw)|we M}.
1=0

The setM is said to beéblocked(for the maskm) if it coincides with some union of
the setdJ; ; ;, 0<s< p"~1—1, does not contain the sef,_; o, and satisfies the
condition

ToM C MU{w e U"| m(w) = 0}.

The notion of a blocked set was introduced by the author arférétasov in [11]
in the setting of dyadic wavelets @, , With the help of Theorem 2 can be proved
the following

THEOREM3 . Let¢ € L2(G) be a refinable function in4(G) such that (8) =
1. Thend is not stable if and only if its mask m possesses a blocked set

It is clear that each mask can have only a finite number of lBlddets. Thus,
Theorem 3 reduces the stability problem for a refinable foncio the verification
of some combinatorial property, which can be verified, astaheoretically, in
finite time.
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3 Multiresolution Analysis on Vilenkin's Group

A collection of closed subspac& C L?(G), j € Z is called amultiresolution
analysis(MRA) in L?(G) if the following hold:
(i) VjCVjiiforall jeZ;
(i) UV =L%(G)andnV; = {0};
(i) f(-) eV < f(A)eVjforall jeZ;
(iv) f(-)eVo= f(-eh)eVforallheH;
(v) there is a functiorp € L?(G) such that the systerfp(-ch)| h€ H} is an
orthonormal basis dfj.
The functiong in condition (v) is called acaling functiorin L?(G).
For arbitrary$ € L2(G) we set

din(x) = p/2p(Alxch), jeZ heH.

We say thaa function$ generates a MRA ind(G) if the system{ ¢ (-©h) | h ¢
H} is orthonormal inL2(G) and, in addition, the family of subspaces

Vj = clog 2 g span{¢jn| he H}, jeZ,

is a MRAInL?(G). If a function$ generates a MRA ih?(G), then it is a scaling
function inL2(G). In this case the systef®; n | h € H} is an orthonormal basis of
V; for every j € Z and one can definerthogonal waveletg, ..., {1 in such a
way that the functions

¢ in(x)=p2P(Alxeh), 1<I<p-1jeZheH,

form an orthonormal basis df?(G) (see Section 5). Note that in Example 1 we
can take

p—1
W)=Y gfdp(Axohy), 1<I<p-1,
a=0

whereg, = exp(2ri/p).
Let us denote by) the sequencev = (wj) such thatw, =1 andw; = 0 for
j # 1 (in particular,dy = 0). It is easily seen that

{weH"| x(x,w) =1forxe A(H)} = {&,01,...,0p-1}.
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Hence the sefd } is the annihilator of the subgroufs(H) in H. It was claimed
in [12] that if a refinable functiorp satisfies the conditio@(e) =1 and the or-
thonormality of{¢ (-©h) | h€ H} in L%(G), then

m0)=1 and pz:|m(w@d)|2=1, weG". (7)
|=

From this it follows that the equalities
bo=1, [bj*+|bjpnal*+ -+ |bjppnpril?=1 0<j<p"t-1, (8

are necessary (but not sufficient, see Example 3 below) ésybtem{¢ (-©h)|h e
H} to be orthonormal i.?(G). Under which additional conditions the functign
generates a MRA ih?(G)? Theorem 4 below contains the answer to this question.

A compact subsef of G* is said to becongruent to U modulo H- if u*(E) =
1 and, for eaclw € E, there is an elemetit € H' such thatw ® h* e U*. Letm
be the mask of equation (1). We say thasatisfies thenodified Cohen condition
if there exists a compact subgetof G* containing a neighbourhood of the zero
element such that:

1) E congruent tdJ* moduloH+;

2) the inequality _
inf inf m(B™'w)| >0 (9)
jeN weE
is true.

SinceE is compact, we note that ih(8) = 1 then there exists a numbéj
such tham(B~Jw) =1 forall j > jo, w € E. Therefore (9) holds if the polynomial
m(w) does not vanish on the sdés(E),...,B~I°(E). Moreover, we can choose
jo < p", becausem is completely defined by the values (4) (amdis an H-*-
periodic function).

THEOREM 4. Suppose that the refinement equat{@y possesses a solution
¢ € L2(G) such that® (8) = 1 and the corresponding mask m satisfies conditions
(7) Then the following are equivalent

(@) ¢ generates a MRA ind(G);
(b) m satisfies the modified Cohen’s condition
(c) m has no blocked sets

The proofs of Theorem 1 - 4 are given by the author in the repaper [14];
some similar results for the dyadic refinable functions aaslelets orR have been
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obtained in [11] (see also [18]). Fer= 2 the equivalencga) < (b) of Theorem
4 was found by W. Lang in [9].

EXAMPLE 2. Letp=n=2and
b0:17 bl:a7 bZZOa b3:b7

where|a|? +|b|?> = 1. Putag = (1+a+b)/4,a; = (1+a—b)/4,a = (1—a—b) /4,
a3 = (1—a+b)/4

Fora# 0 the modified Cohen condition is fulfilled on the && U * and hence
the corresponding solutiof generates a MRA in?(G). In particular, fora =1
anda = —1 the Haar function:¢ (x) = 1, (x) and the displaced Haar function:
¢ (x) = Ly (xo hyy)) are obtained respectively. If@ |a| < 1, then a solutiory is
defined by the expansion

00

¢(x):(1/2)1U(A‘lx)(1+aZobjwzju,l(A‘lx)), xcG. (10
=

In the casea = 0 the set)] ; is a blocked set, a functiofi is defined by the formula
¢ (x) = (1/2)1y (A~1x) and the systeni$ (-© h)| h € H} is linear dependence.

The decomposition (10) was found by W. Lang in [8]. Wheh< 1/2 the
corresponding wavelets form an unconditional basis in@dicesL9(G), 1 < q <
oo, Moreover, the relevant wavelets on the line may be idedtifie multiwavelets
consisting of piecewise fractal functions, in the sense aésbpust; see [9] and [10]
for the details.

REMARK 1. In [12], a method for finding estimates of regularity of nafble
functions on Vilenkin groups was developed. Wifeis given by (10) we have the
sharp estimate

sup{|d(x) - (y)| | xyeU 1, xoyeU;}<Clb!, jeN

(see Example 4.3 in [12] ). Also, it is known that the exponantegularity of a
refinable function for smalp andn can be computed using the joint spectral radius
of some linear finite-dimensional operators which are définethe coefficients of
the corresponding refinement equation (cf. [11], Remark 3])[

REMARK 2. Suppose thap generates a MRA ih?(G). For eachj € Z let us
denite byP; the orthogonal projection of?(G) on V;j. If known that a "signal”f
belongs to some clasg/ in L2(G), then it is possible to seek the parameteys
which minimize, for some fixj, the quantity

sup{||f —P;f|| | f€.#}
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and to study the behavior of this quantity ps- 4o (cf. [17]). We refer to [12]
and [19] for an adapted multiresolution analysisLif(G) based on the entropy
estimates.

4 Expansion in Walsh Series

Assume that a compactly supported solutiprof equation (1) generates a MRA
in L2(G) and®(0) = 1. Further, suppose that the values of mask (2) on the cosets
Uy s satisfy condition (8) and le(iy, iz, ... ,in) = bs, if

s=i1p’+i1p'+---+inp", ij€{0,1,...,p—1}.

Then for an integel with the p-ary expansion

k .
IZ%“JPJ7 u]€{07177p_1}7 uk?é07 k:k(|)€Z+7 (11)
i=

we definec; [m] as follows

a[m =y(Ho,0,0,...,0,0) if k() =0;
G [m] :y(“l’o’o"070)y(“07l-11707,070) |f k(l) = 11

C [m] :y(“kvov 0,...,0, O)V(“k—lv ukvov -0, O)
'-'V(UO;IJLIJZw-~aIJn—ZaIJn—l) if k= k(l) > n—1

The indices of each factor in the last product, starting withsecond, are equal
to the indices of the preceding factor shifted one positightwards; at the free first
position one puts the corresponding digit of {heary expansion (11).

Let No(p, n) be the set of all positive integers> p"~* whose p-ary expansion
(11) contains na-tuple (U, Uj+1, ..., Mj+n—1) coinciding with any of then-tuples
(0,0,...,0,1),(0,0,...,0,2),...,(0,0,...,0,p—1).
Then¢ can be written as the following lacunary Walsh series:

¢ =(1/P" WA (1+ Y amW(AY X)), xeG, (12

leN(p,n)

whereN(p,n) = {1,2,...,p" 1 — 1} UNo(p,n) (see [12]). This result seems sur-
prising, since Lang noted in [9] that even jo= 2,n = 3 "no simple patterns appear
in the coefficients” in the Walsh expansion @ Certainly, in the case =n= 2
the decompositions (10) and (12) coincide.
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5 Construction for the Casep =3

Following a standard approach (e.g., [20,21]), we reduegtbblem ofp -wavelet
decomposition into a problem of matrix extension. More ely, using Theorem

4 we shall discuss the followingrocedure to construct orthogonal p -wavelets in
L%(G):

1. Choose numbels, 0 < s< p"—1, so that (8) is true.
2. Computeay, 0< a < p"—1, by (3) and verify that the mask

has no blocked sets.
3. Find

m(w) =y a/W(w), 1<I<p-1,

aczy

such thaM(w) := (M (w® B*lw[k]))ﬁ[:lo is an unitary matrix.
4. Defineyn,...,Yp-1 by the formula

W =p ag ¢ (Axohyg), 1<1<p-1

acly

In the p = 2 case one can chooaél) = (—1)Yagq1 Or ag,l) =(—1)%pn_1 ¢
for 0 < a < 2"— 1 (anday’ = 0 for the resi); cf. [9], [11].

In the thep > 2 case we take the coefficierdg as in Step 2 (so thdd; satisfy
(8) andmg has no blocked sets). Then

p"-1 , 1
S laa==. (13
a=0 p
In fact, Parseval’s relation for the discrete transformjsaf®d (4) can be written as
p-1 , 1 p-1 )
lag|®=— > [bal”.
;gb pn égb
Therefore (13) follows from (8). Now we define

pn7171

Ax(2) = ;a apiz, 0<k<p-1,
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and introduce the polynomialsy (z), degAik < p"~* — 1, such that

w) = Zowl(*(w)A.k(Wg(w)), 1<l<p-1. (14)

It follows immediately that
M(w) = AW ()W (w), (15

where A(2) == (Ai( )),k 0 WHw) = W (we B*lw[k]))ﬁ;:lo. The matrix
p~Y/2W*(w) is unitary. Thus, by (15), unitarity &¥(w) is equivalent to that of the
matrix p~/2A(z) with z=W;; (). From this we claim that Step 3 of the procedure
can be realized by some modification of the algorithm for imaxtension sug-
gested by W. Lawton, S.L. Lee and Zuowei Shen in [22] (see [@8) Theorem
2.1).

We illustrate the described procedure by the following epkem

EXAMPLE 3. Letp=3,n=2andbg=1,b; =a, b, =a, b3 =0, bs = b,
b5=[3,b6:0,b7:C, b8:y, where

@+ [b? 4 [cf? = |a?+ | BIP+ |y =

Then (3) implies precisely that

1
ao:§(1+a+b+c+a+[3+y),

:$(1+ a+a+(b+B)e2+ (c+y)es),

1
ap :§(

é(1+ (a+b+c)ed+ (a+B+Yy)es),

1+a+a+(b+B)e+ (c+y)es),
ag =
au==(1+c+B+(a+y)es+ (b+a)es),
==(1+b+y+(a+P)e+ (c+a)ez),
as ==(1+ (a+b+c)es+ (a+B+Yy)ed),
==(1+b+y+(a+P)es+ (c+a)ej),

ag==(1+c+B+(a+ye+ (b+ a)sg)

@II—‘@II—‘@II—‘@II—‘@IH
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wheregz = exp(27i /3). Further, ify(1,0) = a, y(2,0) = a, y(1,1) =b, y(2,1) = B,
y(1,2) =c, ¥(2,2) =y, andy; € {1,2}, then we let:

¢ [m = y(up,0) for | = Lp;
c[m) = y(u1,0)y(to, k1) for | = o+ 3p;

ko
¢ [m = y(Hk, 0)Y(Hi—1, M) - .. Y(Ho, 1) for Izguﬁ’, k> 2.
=

According to (12), we get

¢ (x) = (1/3)1y (A %) (1+ Z a[mW (A1), xeG.
The blocked sets are:

1) Uf, fora=c=0,
2) Uy, fora=pB=0,
3) UjuU i, fora=a =0.

Hence,$ generates a MRA ih?(G) in the following cases:

1) a#0,a #0,
2) a=0,a #£0,c#£0,
3) a=0,a#0,8#0.

By the definition ofmy we have

Mo (@) = Aoo(Ws (@) +Wi (@) Aor (W5 (w)) +W5 (@) Aoz2(W5 (w)),

whereAgo(2z) = ag + agz+ a2, Ao1(2) = a1 + ayz+ a72%, Aoa(2) = ap + asz+ agZ’.
Now, we require B
a#0, ao=a ad+bB+cy=a (16)

In particular, for 0< a < 1 one can choose numbefst such that

a

COS(@—'[) == m

and thensetr =a,r =+v1—a?, B =rcosd, y=rsinf, b=rcos, c=rsint.
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Under the assumptions (16) the mask has no blocked sets. Moreover, it
follows from (13) and (16) that

1

[A0o(2)* + | Aox(2) * + | Ace( D = 3

for all zon the unit circleT. To see this, note that by a direct calculation
8
| Aoo(2)? + [ Aox(2)|* + | Aoa(2)|* = Z)Iaa %+ 2Re{(2083 + 184 + 8285)Z
k=

+2Re(apas + a137 + a,8g) 7] + 2Re(asa + a4dy + asdg) 222,

where

27(apag + a;a + aas)

—a+a+ (0 +aa +bB+cy)es+ (@a+aa +bp +Ty)es,
27(apas + a1ay + axag)

—a+a+ (a+aa +bp +Ty)es+ (O +ad + bB +cy)e2,
27(agds + a4a7 + asag)

— 2e3Rea+ 2e5Req + 2Re(ad + bf + ¢y).

Further, if
ao=V3(ag,a1,82), 01=v3(ag,a,8), 2= 3(as,a7,38),
then
|aol®+|aa]*+ | a2* =1, (ao,a1) = (a0, a2) = (01, 02) =0,
where(-,-) is the inner product irC3. It is clear that
Qo+ 01Z+ 027 = v/3(A00(2), Ao1(2), Ao2(2)).
Let P, be the orthogonal projection ontp, i.e.,

Pw=——="a5>, we (C?’.

Then we have

(I =P+ Z 1P) (a0 + 012+ a2 2)
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= (I =P)ag+Pa1+ z(Paz + (1 —P)ai) =: o+ Pz
One now verifies that

1Bol2+|BiP=1, (Bo,B1)=0

Futhermore, ifP; is the orthogonal projection onfé, then
(I =Pi+Z 'P1)(Bo+Br2) = (I —P)Bo+PiBL=: Yo

By the Gram-Schmidt orthogonalization, we can find an upitaatrix "o once
the first row of this matrix is the unit vectgg. Then we set

FN@=(0-P+zR)F'o and (2 = —P+zR)1(2).
The first row ofl(z) coincides withag + 012+ a,Z%. Putting
5 1
2)) ko= —=I2(2),
(Ak(2))fk=0 73 2(2)

we see thatn; andmy, can be defined as follows:

[ee]

ZW* AW (@) = Y alWg(w), =12
a=0

Finally, we find

[oe]

W(x)=3Y ay¢(Axchg), =12
a=0

REMARK 3. For anyn, p we have

p—1
w) = > W (w)Ao(Ws (w)).
K=0
If we require
S a2 = L &t
Ax(2)|=~= forall zeT, 17
k; p
then the vectors

a = ﬁ(aplaapl-q-l,---aapl+p—1)7 0<I<p—-1,

form an orthonormal basis i€P. In this case Step 3 of the procedure can be
realized as in Example 3. However, it is hard to use known odshof matrix
extension to construaps, . .., Yp_1 Without the assumption (17).
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