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Abstract

For any integers p, n ≥ 2 necessary and sufficient conditions are given for scaling filters with pn

many terms to generate a p-multiresolution analysis in L2(R+). A method for constructing orthogonal
compactly supported p-wavelets onR+ is described. Also, an adaptive p-wavelet approximation in L2(R+)
is considered.
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1. Introduction

In the wavelet literature, there is some interest in the study of compactly supported
orthonormal scaling functions and wavelets with an arbitrary dilation factor p ∈ N, p ≥ 2
(see, e.g., [3, Section 10.2], [21, Section 2.4], [4, and references therein]). Such wavelets can
have very small support and multifractal structure, features which may be important in signal
processing and numerical applications. In this paper we study compactly supported orthogonal
p-wavelets related to the generalized Walsh functions {wl}. There are two ways of considering
these functions; either they may be defined on the positive half-line R+ = [0,∞), or, following
Vilenkin [24], they may be identified with the characters of the locally compact Abelian group
G p which is a weak direct product of a countable set of the cyclic groups of order p. The classical
Walsh functions correspond to the case p = 2, while the group G2 is isomorphic to the Cantor
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dyadic group C (see [22,9]). Orthogonal compactly supported wavelets on the group C (and
relevant wavelets on R+) are studied in [15–17,8]. Decimation by an integer different from 2 is
discussed in [5,6], but construction for a general p is not completely treated. Here we review
some of the elements of that construction on R+ and give an approach to the p > 2 case in
a concrete fashion. An essential new element is the matrix extension in Section 4. Finally, in
Section 5, we describe an adaptive p-wavelet approximation in L2(R+).

Let us consider the half-line R+ with the p-adic operations ⊕ and 	 (see Section 2 for the
definitions). We say that a compactly supported function ϕ ∈ L2(R+) is a p-refinable function if
it satisfies an equation of the type

ϕ(x) = p
pn
−1∑

α=0

aαϕ(px 	 α) (1.1)

with complex coefficients aα . Further, the generalized Walsh polynomial

m(ω) =
pn
−1∑

α=0

aαwα(ω) (1.2)

is called the mask of Eq. (1.1) (or its solution ϕ).

An interval I ⊂ R+ is a p-adic interval of range n if I = I (n)s = [sp−n, (s + 1)p−n) for
some s ∈ Z+. Since wα is constant on I (n)s whenever 0 ≤ α, s < pn , it is clear that the mask m
is a p-adic step function. If bs = m(sp−n) are the values of m on p-adic intervals, i.e.,

bs =

pn
−1∑

α=0

aαwα(sp−n), 0 ≤ s ≤ pn
− 1, (1.3)

then

aα =
1
pn

pn
−1∑

s=0

bswα(s/pn), 0 ≤ α ≤ pn
− 1, (1.4)

and, conversely, equalities (1.3) follow from (1.4). These discrete transforms can be realized by
the fast Vilenkin–Chrestenson algorithm (see, for instance, [22, p.463], [19]). Thus, an arbitrary
choice of the values of the mask on p-adic intervals defines also the coefficients of Eq. (1.1).

It was claimed in [6] that if a p-refinable function ϕ satisfies the condition ϕ̂(0) = 1 and the
system {ϕ(· 	 k) | k ∈ Z+} is orthonormal in L2(R+), then

m(0) = 1 and
p−1∑
l=0

|m(ω + l/p)|2 = 1 for all ω ∈ [0, 1/p).

From this it follows that the equalities

b0 = 1, |b j |
2
+ |b j+pn−1 |

2
+ · · · + |b j+(p−1)pn−1 |

2
= 1, 0 ≤ j ≤ pn−1

− 1, (1.5)

are necessary (but not sufficient, see Example 4) for the system {ϕ(· 	 k)|k ∈ Z+} to be
orthonormal in L2(R+).

Denote by 1E the characteristic function of a subset E of R+.
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Example 1. If a0 = · · · = ap−1 = 1/p and aα = 0 for all α ≥ p, then a solution of Eq. (1.1) is
ϕ = 1[0, pn−1). Therefore the Haar function ϕ = 1[0,1) satisfies this equation for n = 1 (compare
with [5, Remark 1.3] and [1, Section 5.1]).

Example 2. If we take p = n = 2 and put

b0 = 1, b1 = a, b2 = 0, b3 = b,

where |a|2 + |b|2 = 1, then by (1.4) we have

a0 = (1+ a + b)/4, a1 = (1+ a − b)/4,

a2 = (1− a − b)/4, a3 = (1− a + b)/4.

In particular, for a = 1 and a = −1 the Haar function: ϕ(x) = 1[0,1)(x) and the displaced Haar
function: ϕ(x) = 1[0,1)(x 	 1) are obtained. If 0 < |a| < 1, then

ϕ(x) = (1/2)1[0,1)(x/2)

(
1+ a

∞∑
j=0

b jw2 j+1−1(x/2)

)
and

ϕ(x) =

{
(1+ a − b)/2+ bϕ(2x), 0 ≤ x < 1,
(1− a + b)/2− bϕ(2x − 2), 1 ≤ x ≤ 2

(see [15,17]). Moreover, it was proved in [16] that, if |b| < 1/2, then the corresponding
wavelet system {ψ jk} is an unconditional basis in all spaces Lq(R+), 1 < q < ∞. When
a = 0 the system {ϕ(· 	 k)|k ∈ Z+} is linear dependence (since ϕ(x) = (1/2)1[0,1)(x/2) and
ϕ(x 	 1) = ϕ(x)).

We recall that a collection of closed subspaces V j ⊂ L2(R+), j ∈ Z, is called a p-
multiresolution analysis (p-MRA) in L2(R+) if the following hold:

(i) V j ⊂ V j+1 for all j ∈ Z;

(ii)
⋃

V j = L2(R+) and
⋂

V j = {0};
(iii) f (·) ∈ V j ⇐⇒ f (p ·) ∈ V j+1 for all j ∈ Z;
(iv) f (·) ∈ V0 H⇒ f (· 	 k) ∈ V0 for all k ∈ Z+;
(v) there is a function ϕ ∈ L2(R+) such that the system {ϕ(· 	 k)|k ∈ Z+} is an orthonormal

basis of V0.

The function ϕ in condition (v) is called a scaling function in L2(R+).
For any ϕ ∈ L2(R+), we set

ϕ j,k(x) = p j/2ϕ(p j x 	 k), j ∈ Z, k ∈ Z+.

We say that ϕ generates a p-MRA in L2(R+) if the system {ϕ(· 	 k)|k ∈ Z+} is orthonormal
in L2(R+) and, in addition, the family of subspaces

V j = closL2(R+)span {ϕ j,k | k ∈ Z+}, j ∈ Z, (1.6)

is a p-MRA in L2(R+). Any p-refinable function ϕ which generates a p-MRA in L2(R+) can
be written as a sum of lacunary series by the generalized Walsh functions (see [5,6]).
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The results of this paper are concerned mainly with the following two problems:

1. Find necessary and sufficient conditions in order that a p-refinable function ϕ generates a
p-MRA in L2(R+).

2. Describe a method for constructing orthogonal compactly supported p-wavelets on R+.

Note that similar problems can be considered in framework of the biorthogonal p-wavelet
theory (see [7] for the p = 2 case).

If a function ϕ generates a p-MRA, then it is a scaling function in L2(R+). In this case, the
system {ϕ j,k | k ∈ Z+} is an orthonormal basis of V j for each j ∈ Z, and moreover, one can
define orthogonal p-wavelets ψ1, . . . , ψp−1 in such a way that the functions

ψl, j,k(x) = p j/2ψl(p
j x 	 k), 1 ≤ l ≤ p − 1, j ∈ Z, k ∈ Z+,

form an orthonormal basis of L2(R+). If p = 2, only one wavelet ψ is obtained and the system
{2 j/2ψ(2 j

· 	k)| j ∈ Z, k ∈ Z+} is an orthonormal basis of L2(R+). In Section 4 we give a
practical method to design orthogonal p-wavelets ψ1, . . . , ψp−1, which is based on an algorithm
for matrix extension and on the following

Theorem. Suppose that equation (1.1) possesses a compactly supported L2-solution ϕ such that
its mask m satisfies conditions (1.5) and ϕ̂(0) = 1. Then the following are equivalent:

(a) ϕ generates a p-MRA in L2(R+);
(b) m satisfies modified Cohen’s condition;
(c) m has no blocked sets.

We review some notation and terminology. Let M ⊂ [0, 1) and let

Tp M =
p−1⋃
l=0

{l/p + ω/p|ω ∈ M} .

The set M is said to be blocked (for the mask m) if it is a union of p-adic intervals of range n−1,
does not contain the interval [0, p−n+1), and satisfies the condition

Tp M \ M ⊂ Null m,

where Null m := {ω ∈ [0, 1)|m(ω) = 0}. It is clear that each mask can have only a finite number
of blocked sets. In Section 3 we shall prove that if ϕ is a p-refinable function in L2(R+) such
that ϕ̂(0) = 1, then the system {ϕ(· 	 k)|k ∈ Z+} is linearly dependent if and only if its mask
possesses a blocked set. The notion of blocked set (in the case p = 2) was introduced in the
recent paper [8].

The family {[0, p− j )| j ∈ Z} forms a fundamental system of the p-adic topology on R+. A
subset E of R+ that is compact in the p-adic topology is said to be W -compact. It is easy to see
that the union of a finite family of p-adic intervals is W -compact.

A W -compact set E is said to be congruent to [0, 1) modulo R+ if its Lebesgue measure is
1 and, for each x ∈ [0, 1), there is an element k ∈ Z+ such that x ⊕ k ∈ E . As before, let m
be the mask of refinable equation (1.1). We say that m satisfies the modified Cohen condition
if there exists a W -compact subset E of R+ congruent to [0, 1) modulo Z+ and containing a
neighbourhood of zero such that

inf
j∈N

inf
ω∈E
|m(p− jω)| > 0 (1.7)
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(cf. [3, Section 6.3], [16, Sect. 2]). Since E is W -compact, it is evident that if m(0) = 1 then
there exists a number j 0 such that m(p− jω) = 1 for all j > j 0, ω ∈ E . Therefore (1.7) holds
if m does not vanish on the sets E/p, . . . , E/p− j 0 . Moreover, one can choose j 0 ≤ pn because
m is 1-periodic and completely defined by the values (1.3).

Now we illustrate the theorem with the following two examples.

Example 3. Let p = 3, n = 2 and

b0 = 1, b1 = a, b2 = α, b3 = 0, b4 = b, b5 = β, b6 = 0, b7 = c, b8 = γ,

where

|a|2 + |b|2 + |c|2 = |α|2 + |β|2 + |γ |2 = 1.

Then (1.4) implies precisely that

a0 =
1
9
(1+ a + b + c + α + β + γ ),

a1 =
1
9
(1+ a + α + (b + β)ε2

3 + (c + γ )ε3),

a2 =
1
9
(1+ a + α + (b + β)ε3 + (c + γ )ε

2
3),

a3 =
1
9
(1+ (a + b + c)ε2

3 + (α + β + γ )ε3),

a4 =
1
9
(1+ c + β + (a + γ )ε2

3 + (b + α)ε3),

a5 =
1
9
(1+ b + γ + (a + β)ε2

3 + (c + α)ε3),

a6 =
1
9
(1+ (a + b + c)ε3 + (α + β + γ )ε

2
3),

a7 =
1
9
(1+ b + γ + (a + β)ε3 + (c + α)ε

2
3),

a8 =
1
9
(1+ c + β + (a + γ )ε3 + (b + α)ε

2
3),

where ε3 = exp(2π i/3). Further, if

γ (1, 0) = a, γ (2, 0) = α, γ (1, 1) = b, γ (2, 1) = β, γ (1, 2) = c, γ (2, 2) = γ

and ν j ∈ {1, 2}, then we let

cl = γ (ν0, 0) for l = ν0;

cl = γ (ν1, 0)γ (ν0, ν1) for l = ν0 + 3ν1;

. . .

cl = γ (νk, 0)γ (νk−1, νk) . . . γ (ν0, ν1) for l =
k∑

j=0

ν j 3 j , k ≥ 2.

The solution of Eq. (1.1) can be decomposed (see [6]) as follows:

ϕ(x) = (1/3)1[0,1)(x/3)

(
1+

∑
l

clwl(x/3)

)
.
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The blocked sets are: (1) [1/3, 2/3) for a = c = 0, (2) [2/3, 1) for α = β = 0, (3) [1/3, 1) for
a = α = 0. Hence, ϕ generates a MRA in L2(R+) in the following cases: (1) a 6= 0, α 6= 0, (2)
a = 0, α 6= 0, c 6= 0, (3) α = 0, a 6= 0, β 6= 0.

Example 4. Suppose that for some numbers bs , 0 ≤ s ≤ pn
− 1, equalities (1.5) are true. Using

(1.4), we find the mask

m(ω) =
pn
−1∑

α=0

aαwα(ω),

which takes the values bs on the intervals I (n)s , 0 ≤ s ≤ pn
− 1. When b j 6= 0 for

1 ≤ j ≤ pn−1
− 1 Eq. (1.1) has a solution, which generates a p-MRA in L2(R+) (the modified

Cohen condition is fulfilled for E = [0, 1)). The expansion of this solution in a lacunary series
by generalized Walsh functions is contained in [6].

2. Preliminaries

For the integer and the fractional parts of a number x we are using the standard notations, [x]
and {x}, respectively. For any s ∈ Z let us denote by 〈s〉p the remainder upon dividing s by p.
Then for x ∈ R+ we set

x j = 〈[p
j x]〉p, x− j = 〈[p

1− j x]〉p, j ∈ N. (2.1)

For each x ∈ R+, these numbers are the digits of the p-ary expansion

x =
∑
j<0

x j p− j−1
+

∑
j>0

x j p− j

(for a p-adic rational x we obtain an expansion with finitely many nonzero terms). It is clear that

[x] =
∞∑
j=1

x− j p j−1, {x} =
∞∑
j=1

x j p− j ,

and there exists k = k(x) in N such that x− j = 0 for all j > k.
Consider the p-adic addition defined on R+ as follows: if z = x ⊕ y, then

z =
∑
j<0

〈x j + y j 〉p p− j−1
+

∑
j>0

〈x j + y j 〉p p− j .

As usual, the equality z = x 	 y means that z ⊕ y = x . According to our notation

[x ⊕ y] = [x] ⊕ [y] and {x ⊕ y} = {x} ⊕ {y}.

Note that for p = 2 we have

x ⊕ y =
∑
j<0

|x j − y j |2− j−1
+

∑
j>0

|x j − y j |2− j .

Letting εp = exp(2π i/p), we define a function w1 on [0, 1) by

w1(x) =

{
1, x ∈ [0, 1/p),
εl

p, x ∈ [lp−1, (l + 1)p−1), l ∈ {1, . . . , p − 1},
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and extend it to R+ by periodicity: w1(x + 1) = w1(x) for all x ∈ R+. Then the generalized
Walsh system {wl |l ∈ Z+} is defined by

w0(x) ≡ 1, wl(x) =
k∏

j=1

(w1(p
j−1x))l− j , l ∈ N, x ∈ R+,

where the l− j are the digits of the p-ary expansion of l:

l =
k∑

j=1

l− j p j−1, l− j ∈ {0, 1, . . . , p − 1}, l−k 6= 0, k = k(l).

For any x, y ∈ R+, let

χ(x, y) = εt (x,y)
p , t (x, y) =

∞∑
j=1

(x j y− j + x− j y j ), (2.2)

where x j , y j are given by (2.1). Note that

χ(x, p−sl) = χ(p−s x, l) = wl(p
−s x), l, s ∈ Z+, x ∈ [0, ps),

and

χ(x, z)χ(y, z) = χ(x ⊕ y, z), χ(x, z)χ(y, z) = χ(x 	 y, z), (2.3)

if x, y, z ∈ R+ and x ⊕ y is p-adic irrational. Thus, for fixed x and z, equalities (2.3) hold for all
y ∈ R+ except countably many of them (see [9, Section 1.5]).

It is known also that Lebesgue measure is translation invariant on R+ with respect to p-adic
addition, and so we can write∫

R+
f (x ⊕ y) dx =

∫
R+

f (x) dx, f ∈ L1(R+),

for all y ∈ R+ (see [22, Section 1.3], [9, Section 6.1]).
The Walsh–Fourier transform of a function f ∈ L1(R+) is defined by

f̂ (ω) =
∫
R+

f (x)χ(x, ω) dx,

where χ(x, ω) is given by (2.2). If f ∈ L2(R+) and

Ja f (ω) =
∫ a

0
f (x)χ(x, ω) dx, a > 0,

then f̂ is the limit of Ja f in L2(R+) as a → ∞. We say that a function f : R+ 7→ C is W -
continuous at a point x ∈ R+ if for every ε > 0 there exists δ > 0 such that | f (x⊕y)− f (x)| < ε

for 0 < y < δ. For example, each Walsh polynomial is W -continuous (see [22, Section 9.2], [9,
Section 2.3]).

Denote by 〈·, ·〉 and ‖ · ‖ the inner product and the norm in L2(R+), respectively.

Proposition 1 (See [9, Chap. 6]). The following properties hold:

(a) if f ∈ L1(R+), then f̂ is a W -continuous function and f̂ (ω)→ 0 as ω→∞;
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(b) if both f and f̂ belong to L1(R+) and f is W -continuous, then

f (x) =
∫
R+

f̂ (ω)χ(x, ω) dω for all x ∈ R+;

(c) if f, g ∈ L2(R+), then 〈 f, g〉 = 〈 f̂ , ĝ 〉 (Parseval’s relation).

Let En(R+) be the space of p-adic entire functions of order n on R+, that is, the set of
functions which are constant on all p-adic intervals of range n. Then for every f ∈ En(R+)
we have

f (x) =
∞∑
α=0

f (αp−n)1[αp−n ,(α+1)p−n)(x), x ∈ R+.

For example, the mask m of Eq. (1.1) belongs to En(R+).

Proposition 2 ([9, Section 6.2]). The following properties hold:

(a) if f ∈ L1(R+) ∩ En(R+), then supp f̂ ⊂ [0, pn
];

(b) if f ∈ L1(R+) and supp f ⊂ [0, pn
], then f̂ ∈ En(R+).

Now we prove the following analogue of Theorem 1 in [8]:

Proposition 3. Let ϕ ∈ L2(R+) be a compactly supported solution of equation (1.1) such that
ϕ̂(0) = 1. Then

pn
−1∑

α=0

aα = 1 and suppϕ ⊂ [0, pn−1
].

This solution is unique, is given by the formula

ϕ̂(ω) =

∞∏
j=1

m(p− jω)

and possesses the following properties:

(1) ϕ̂(k) = 0 for all k ∈ N (the modified Strang–Fix condition);
(2)

∑
k∈Z+ ϕ(x ⊕ k) = 1 for almost all x ∈ R+ (the partition of unity property).

Proof. Using the Walsh–Fourier transform, we have

ϕ̂(ω) = m(ω/p)ϕ̂(ω/p). (2.4)

Observe that wα(0) = ϕ̂(0) = 1. Hence, letting ω = 0 in (1.2) and (2.4), we obtain

pn
−1∑

α=0

aα = 1.

Further, let s be the greatest integer such that

µ{x ∈ [s − 1, s)|ϕ(x) 6= 0} > 0,

where µ is the Lebesgue measure on R+. Suppose that s ≥ pn−1
+1. Choose an arbitrary p-adic

irrational x ∈ [s − 1, s). Applying (2.1), we have

x = [x] + {x} =
k∑

j=1

x− j p j−1
+

∞∑
j=1

x j p− j , (2.5)
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where {x} > 0, x−k 6= 0, k = k(x) ≥ n. For any α ∈ {0, 1, . . . , pn
− 1} we set y(α) = p x 	 α.

Then

y(α) =
k+1∑
j=1

y(α)
− j p j−1

+

∞∑
j=1

y(α)j p− j ,

where y(α)
−k−1 = x−k and among the digits y(α)1 , y(α)2 , . . ., there is a nonzero one. Therefore,

px 	 α > pn for a.e. x ∈ [s − 1, s). (2.6)

Now assume that s ≤ pn . Then it is easy to see from (2.6) that ϕ(p x 	 α) = 0 for a.e.
x ∈ [s − 1, s). Therefore by (1.1) we get ϕ(x) = 0 for a.e. x ∈ [s − 1, s), contrary to our
choice of s. Thus s ≥ pn

+ 1. Hence, if x given by (2.5), then for any α ∈ {0, 1, . . . , pn
− 1} we

have

px 	 α > p(s − 1)− (pn
− 1) ≥ 2(s − 1)− (s − 2) = s,

where the first inequality is strong because {x} > 0. As above, we conclude that ϕ(x) = 0 for
a.e. x ∈ [s − 1, s). Consequently, s ≤ pn−1 and suppϕ ⊂ [0, pn−1

].

Let us prove that

ϕ̂(ω) =

∞∏
j=1

m(p− jω). (2.7)

We note that ϕ belongs to L1(R+) because it lies in L2(R+) and has a compact support. Since
suppϕ ⊂ [0, pn−1

], by Proposition 2 we get ϕ̂ ∈ En−1(R+). Also, by virtue of ϕ̂(0) = 1, we
obtain ϕ̂(ω) = 1 for all ω ∈ [0, p1−n). On the other hand, m(ω) = 1 for all ω ∈ [0, p1−n).
Hence, for every positive integer l,

ϕ̂(ω) = ϕ̂(p−l−nω)

l+n∏
j=1

m(p− jω) =

∞∏
j=1

m(p− jω), ω ∈ [0, pl).

Therefore, (2.7) is valid and a solution ϕ is unique.
By Proposition 1, for any k ∈ N we have

ϕ̂(k) = ϕ̂(k)
j−1∏
s=0

m(psk) = ϕ̂(p j k)→ 0

as j → ∞ (since ϕ ∈ L1(R+) and m(psk) = 1 because m(0) = 1 and m is 1-periodic). It
follows that

ϕ̂(k) = 0 for all k ∈ N. (2.8)

By the Poisson summation formula we get∑
k∈Z+

ϕ(x ⊕ k) =
∑

k∈Z+
ϕ̂(k)χ(x, k).

Hence, since ϕ̂(0) = 1, from (2.8) we obtain∑
k∈Z+

ϕ(x ⊕ k) = 1 for a.e. x ∈ R+. �

The proposition is proved.
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A function f ∈ L2(R+) is said to be stable if there exist positive constants A and B such that

A

(
∞∑
α=0

|aα|
2

)1/2

≤

∥∥∥∥∥ ∞∑
α=0

aα f (· 	 α)

∥∥∥∥∥ ≤ B

(
∞∑
α=0

|aα|
2

)1/2

for each sequence {aα} ∈ `2. In other words, f is stable if functions f (· 	 k), k ∈ Z+, form a
Riesz system in L2(R+). We note also, that a function f is stable in L2(R+) with constants A
and B if and only if

A ≤
∑

k∈Z+
| f̂ (ω 	 k)|2 ≤ B for a.e. ω ∈ R+ (2.9)

(the proof of this fact is quite similar to that of Theorem 1.1.7 in [21]).
We say that a function g : R+ → C has a periodic zero at a point ω ∈ R+ if g(ω ⊕ k) = 0

for all k ∈ Z+.

Proposition 4 (cf. [8, Theorem 2]). For a compactly supported function f ∈ L2(R+) the
following statements are equivalent:

(a) f is stable in L2(R+);
(b) { f (· 	 k)|k ∈ Z+} is a linearly independent system in L2(R+);
(c) f̂ does not have periodic zeros.

Proof. The implication (a) ⇒ (b) follows from the well-known property of the Riesz systems
(see, e.g., [21, Theorem 1.1.2]). Our next claim is that f ∈ L1(R+), since f has compact support
and f ∈ L2(R+). Let us choose a positive integer n such that supp f ⊂ [0, pn−1

]. Then by
Proposition 2 we have f̂ ∈ En−1(R+). Besides, if k > pn−1, then

µ{supp f (· 	 k) ∩ [0, pn−1
]} = 0

(as above, µ denotes the Lebesgue measure on R+). Therefore, the linearly independence of the
system { f (· 	 k)|k ∈ Z+} in L2(R+) is equivalent to that for the finite system { f (· 	 k)|k =
0, 1, . . . , pn−1

− 1}. Further, if some vector (a0, . . . , apn−1−1) satisfies conditions

pn−1
−1∑

α=0

aα f (· 	 α) = 0 and |a0| + · · · + |a2n−1−1| > 0, (2.10)

then using the Walsh–Fourier transform we obtain

f̂ (ω)
pn−1
−1∑

α=0

aαwα(ω) = 0 for a.e. ω ∈ R+.

The Walsh polynomial

w(ω) =

pn−1
−1∑

α=0

aαwα(ω)

is not identically equal to zero; hence among I (n−1)
s , 0 ≤ s ≤ pn−1

− 1, there exists an interval
(denote it by I ) for which w(I ⊕ k) 6= 0, k ∈ Z+. Since f̂ ∈ En−1(R+), it follows that (2.10)
holds if and only if there exists a p-adic interval I of range n − 1, such that f̂ (I ⊕ k) = 0 for
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all k ∈ Z+. Thus, (b)⇔ (c). It remains to prove that (c) ⇒ (a). Suppose that f̂ does not have
periodic zeros. Then

F(ω) :=
∑

k∈Z+
| f̂ (ω 	 k)|2, ω ∈ R+,

is positive and 1-periodic function. Moreover, since f̂ ∈ En−1(R+), we see that F is constant on
each I (n−1)

s , 0 ≤ s ≤ pn−1
− 1. Hence (2.9) is satisfied and so Proposition 4 is established. �

The following two propositions are proved in [6]:

Proposition 5. Let ϕ ∈ L2(R+). Then the system {ϕ( · 	 k) | k ∈ Z+} is orthonormal
in L2(R+) if and only if∑

k∈Z+
|ϕ̂(ω 	 k)|2 = 1 for a.e. ω ∈ R+.

Proposition 6. Let {V j } be the family of subspaces defined by (1.6) with given ϕ ∈ L2(R+). If
{ϕ( · 	 k) | k ∈ Z+} is an orthonormal basis in V0, then

⋂
V j = {0}.

We shall use also the following

Proposition 7. Let

m(ω) =
pn
−1∑

α=0

aαwα(ω)

be a polynomial such that

m(0) = 1 and
p−1∑
l=0

|m(ω ⊕ l/p)|2 = 1 for all ω ∈ R+.

Suppose ϕ is a function defined by the Walsh–Fourier transform

ϕ̂(ω) =

∞∏
j=1

m(p− jω).

Then the system {ϕ( · 	 k) | k ∈ Z+} is orthonormal in L2(R+) if and only if m satisfies the
modified Cohen condition.

The proof of this proposition is similar to that of Theorem 6.3.1 in [3] (cf. [15, Theorem 2.1],
[5, Proposition 3.3]).

3. Proof of the theorem

The next lemma gives a relation between stability and blocked sets.

Lemma 1. Let ϕ be a p-refinable function in L2(R+) such that ϕ̂(0) = 1. Then ϕ is not stable
if and only if its mask m has a blocked set.

Proof. Using Propositions 2 and 3, we have suppϕ ⊂ [0, pn−1) and ϕ̂ ∈ En−1(R+). Suppose
that the function ϕ is not stable. As noted in the proof of Proposition 4, then there exists an
interval I = I (n−1)

s consisting entirely of periodic zeros of the Walsh–Fourier transform ϕ̂ (and



Author's personal copy

270 Yu.A. Farkov / Journal of Approximation Theory 161 (2009) 259–279

each periodic zero ω ∈ [0, 1) of ϕ̂ lies in some such I ). Thus, the set

M0 = {ω ∈ [0, 1)|ϕ̂(ω + k) = 0 for all k ∈ Z+}

is a union of some intervals I (n−1)
s , 0 ≤ s ≤ pn−1

− 1. Since ϕ̂(0) = 1, it follows that M0 does
not contain I (n−1)

0 . Furthermore, if ω ∈ M0, then by (2.4)

m(ω/p + k/p)ϕ̂(ω/p + k/p) = 0 for all k ∈ Z+

and hence ω/p + l/p ∈ M0 ∪ Null m for l = 0, 1, . . . , p − 1. Thus, if ϕ is not stable, then M0
is a blocked set for m.

Conversely, let m possess a blocked set M . Then we will show that each element of M is a
periodic zero for ϕ̂ (and by Proposition 4 ϕ is not stable). Assume that there exist ω ∈ M and
k ∈ Z+ such that ϕ̂(ω + k) 6= 0. Choose a positive integer j for which p− j (ω + k) ∈ [0, p1−n)

and, for every r ∈ {0, 1, . . . , j}, set

ur = [p
−r (ω + k)], vr = {p

−r (ω + k)}.

Further, let ur/p = lr/p + sr , where lr ∈ {0, 1, . . . , p − 1} and sr ∈ Z+. It is clear that for all
r ∈ {0, 1, . . . , j − 1}

ur+1 + vr+1 = (p
−1vr + p−1lr )+ sr

and hence vr+1 = p−1(vr + lr ). From this it follows that if vr ∈ M , then vr+1 ∈ Tp M . Besides,
from the equalities

ϕ̂(ω + k) = ϕ̂(p− j (ω + k))
j∏

r=1

m(p−r (ω + k)) = ϕ̂(v j )

j∏
r=1

m(vr )

we see that all vr 6∈ Null m. Thus, if vr ∈ M , then vr+1 ∈ M . Since v0 = ω ∈ M , we
conclude that v j ∈ M . But this is impossible because v j = p− j (ω + k) ∈ [0, p1−n) and
M ∩ [0, p1−n) = ∅. This contradiction completes the proof of Lemma 1. �

Corollary. If ϕ is a p-refinable function in L2(R+) such that ϕ̂(0) = 1, then the system
{ϕ(· 	 k)|k ∈ Z+} is linearly dependent if and only if the mask of ϕ possesses a blocked set.

Lemma 2. Suppose that the mask of refinable equation (1.1) satisfies

m(0) = 1 and
p−1∑
l=0

|m(ω ⊕ l/p)|2 = 1 for all ω ∈ R+. (3.1)

Then the function ϕ given by

ϕ̂(ω) =

∞∏
j=1

m(p− jω) (3.2)

is a solution of Eq. (1) and ‖ϕ‖ ≤ 1.

Proof. The pointwise convergence of product in (3.2) follows from the fact that m is equal to 1
on [0, p1−n) (and for any ω ∈ R+ only finitely many of the factors in (3.2) cannot be equal to
1). Denote by g(ω) the right part of (3.2). From (3.1) we see that |m(ω)| ≤ 1 for all ω ∈ R+.



Author's personal copy

Yu.A. Farkov / Journal of Approximation Theory 161 (2009) 259–279 271

Therefore, for any s ∈ N we have

|g(ω)|2 ≤
s∏

j=1

|m(p− jω)|2

and hence∫ pl

0
|g(ω)|2 dω ≤

∫ pl

0

s∏
j=1

|m(B− jω)|2 dω = 2s
∫ 1

0

s−1∏
j=0

|m(B jω)|2 dω. (3.3)

Further, from the equalities

m(ω) =
pn
−1∑

α=0

aαwα(ω), wα(ω)wβ(ω) = wα	β(ω),

it follows that

|m(ω)|2 =
pn
−1∑

α=0

cαwα(ω), (3.4)

where the coefficients cα may be expressed via aα . Now, we substitute (3.4) into the second
equality of (3.1) and observe that if α is multiply to p, then

p−1∑
l=0

wα(l/p) = p,

and this sum is equal to 0 for the rest α. As a result, we obtain c0 = 1/p and cα = 0 for nonzero
α, which are multiply to p. Hence,

|m(ω)|2 =
1
p
+

pn−1
−1∑

α=0

p−1∑
l=1

cpα+lwpα+l(ω).

This gives

s−1∏
j=0

|m(p jω)|2 = p−s
+

σ(s)∑
γ=1

bγwγ (ω), σ (s) ≤ spn−1(p − 1),

where each coefficient bγ equals to the product of some coefficients cpα+l , l = 1, . . . , p − 1.
Taking into account that∫ 1

0
wγ (ω) dω = 0, γ ∈ N,

we have∫ 1

0

s−1∏
j=0

|m(p jω)|2 dω = p−s .

Substituting this into (3.3), we deduce∫ pl

0
|g(ω)|2 dω ≤ 1, l ∈ N,
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which is due to the inequality∫
R+
|g(ω)|2 dω ≤ 1. (3.5)

Now, let ϕ ∈ L2(R+) and ϕ̂ = g. Then from (3.2) it follows that

ϕ̂(ω) = m(p−1ω)ϕ̂(p−1ω),

and hence ϕ satisfies (1.1). Moreover, from (3.5), by Proposition 1, we get ‖ϕ‖ ≤ 1. �

Lemma 3. Let ϕ be a p-refinable function with a mask m and let ϕ̂(0) = 1. Then the system
{ϕ( · 	 k) | k ∈ Z+} is orthonormal in L2(R+) if and only if the mask m has no blocked sets
and satisfies

p−1∑
l=0

|m(ω ⊕ l/p)|2 = 1 for all ω ∈ R+. (3.6)

Proof. If the system {ϕ( · 	 k) | k ∈ Z+} is orthonormal in L2(R+), then (3.6) holds (see [6])
and a lack of blocked sets follows from Lemma 1 and Proposition 4. Conversely, suppose that m
has no blocked sets and (3.6) is fulfilled. Then we set

Φ(ω) :=
∑

k∈Z+
|ϕ̂(ω 	 k)|2. (3.7)

Obviously, Φ is nonnegative and 1-periodic function. According to Proposition 5, it suffices to
show that Φ(ω) ≡ 1. Let

a = inf{Φ(ω)|ω ∈ [0, 1)}.

From Propositions 2 and 3 it follows that Φ is constant on each I (n−1)
s , 0 ≤ s ≤ pn−1

− 1.
Moreover, if Φ vanishes on one of these intervals, then ϕ̂ has a periodic zero, and hence ϕ is
unstable. On account of Proposition 4 and Lemma 1, this assertion contradicts a lack of blocked
sets for m. Hence, a is positive. Also, by the modified Strang–Fix condition (see Proposition 3),
we have Φ(0) = 1. Thus, 0 < a ≤ 1.

Further, by (2.4) and (3.7) we obtain

Φ(ω) =
p−1∑
l=0

|m(p−1ω 	 p−1l)|2Φ(p−1ω 	 p−1l). (3.8)

Now, let Ma = {Φ(ω) = a|ω ∈ [0, 1)}. In the case 0 < a < 1 from (3.6) and (3.8) we see
that for any ω ∈ Ma the elements p−1ω 	 p−1l, l = 0, 1, . . . , p − 1, belong either Ma or
Null m. Therefore, Ma is a blocked set, which contradicts the assumption. Thus, Φ(ω) ≥ 1 for
all ω ∈ [0, 1). Hence from the equalities∫ 1

0
Φ(ω) dω =

∑
k∈Z+

∫ k+1

k
|ϕ̂(ω)|2 dω =

∫
R+
|ϕ̂(ω)|2 dω = ‖ϕ‖2
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by Lemma 2 we have∫ 1

0
Φ(ω) dω = 1.

Once again applying the inequality Φ(ω) ≥ 1 and using the fact that Φ is constant on each
I (n−1)
s , 0 ≤ s ≤ pn−1

− 1, we conclude that Φ(ω) ≡ 1. �

Proof of the theorem. Suppose that m satisfies condition (b) or (c). Then, by Proposition 7 and
Lemma 3, the system {ϕ( · 	k) | k ∈ Z+} is orthonormal in L2(R+). Let us define the subspaces
V j , j ∈ Z+ by the formula (1.6). By Proposition 6 we have

⋂
V j = {0}. The embeddings

V j ⊂ V j+1 follow from the fact that ϕ satisfies the Eq. (1.1). The equality⋃
V j = L2(R+)

is proved in just the same way as (2.14) in [5] (cf. [3, Section 5.3]). Thus, the implications (b)
⇒ (a) and (c) ⇒ (a) are true. The inverse implications follow directly from Proposition 7 and
Lemma 3. �

4. On matrix extension and p-wavelet construction

Following the standard approach (e.g., [11,18]), we reduce the problem of p-wavelet
decomposition to the problem of matrix extension. More precisely, we shall discuss the following
procedure to construct orthogonal p-wavelets in L2(R+):

1. Choose numbers bs such that equalities (1.5) are true.
2. Compute aα by (1.4) and verify that the mask

m0(ω) =

pn
−1∑

α=0

aαwα(ω)

has no blocked sets.
3. Find

ml(ω) =

pn
−1∑

α=0

a(l)α wα(ω), 1 ≤ l ≤ p − 1,

such that (ml(ω + k/p))p−1
l,k=0 is an unitary matrix.

4. Define ψ1, . . . , ψp−1 by the formula

ψl(x) = p
pn
−1∑

α=0

a(l)α ϕ(p x 	 α), 1 ≤ l ≤ p − 1. (4.1)

In the p = 2 case, one can choose a(1)α = (−1)αaα⊕1 for 0 ≤ α ≤ 2n
− 1 (and a(1)α = 0 for

the rest α). Then m1(ω) = −w1(ω)m0(ω ⊕ 1/2), the matrix(
m0(ω) m0(ω ⊕ 1/2)
m1(ω) m1(ω ⊕ 1/2)

)
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is unitary and, as in [8], we obtain

ψ(x) = 2
2n
−1∑

α=0

(−1)α āα⊕1ϕ(2 x 	 α).

In particular, if n = 1 and a0 = a1 = 1/2, then ψ is the classical Haar wavelet.
In the p > 2 case, we take the coefficients aα as in Step 2 (so that bs satisfy (1.5) and m0 has

no blocked sets). Then

pn
−1∑

α=0

|aα|
2
=

1
p
. (4.2)

In fact, Parseval’s relation for the discrete transforms (1.3) and (1.4) can be written as

pn
−1∑

α=0

|aα|
2
=

1
pn

pn
−1∑

α=0

|bα|
2.

Therefore (4.2) follows from (1.5). Now we define

A0k(z) =
pn−1
−1∑

l=0

ak+p l z
l , 0 ≤ k ≤ p − 1,

and introduce the polynomials Alk(z), deg Alk ≤ pn−1
− 1, such that

ml(ω) =

p−1∑
k=0

wk(ω)Alk(wp(ω)), 1 ≤ l ≤ p − 1. (4.3)

It follows immediately that

M(ω) = A(wp(ω))W (ω), (4.4)

where M(ω) := (ml(ω + k/p))p−1
l,k=0, A(z) := (Alk(z))

p−1
l,k=0, and W (ω) := (wl(ω + k/p))p−1

l,k=0.

The matrix p−1/2W (ω) is unitary. Thus, by (4.4), unitarity of M(ω) is equivalent to that of the
matrix p−1/2 A(z) with z = wp(ω). From this we claim that Step 3 of the procedure can be
realized by some modification of the algorithm for matrix extension suggested by Lawton, Lee
and Shen in [18] (see also [2, Theorem 2.1]).

We illustrate the described procedure by the following examples.

Example 5. Let

m0(ω) =
1
p

p−1∑
α=0

wα(ω)

so that a0 = · · · = ap−1 = 1/p. Then, as in Example 1, we have ϕ = 1[0, pn−1). Setting

ml(ω) =
1
p

p−1∑
α=0

εlα
p wα(ω), 1 ≤ l ≤ p − 1,
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we observe that (ml(ω + k/p))p−1
l,k=0 is unitary for all ω ∈ [0, 1). Indeed, the constant matrix

p−1(εlk
p )

p−1
l,k=0 may be taken as A(z) in (4.4). Therefore we obtain from (4.1)

ψl(x) =
p−1∑
α=0

εlα
p ϕ(p x 	 α), 1 ≤ l ≤ p − 1.

Note that the similar wavelets in the space L2(Qp) were introduced by Kozyrev in [13]; in
connection with these wavelets see also [1, p.450] and Example 4.1 in [12].

Example 6. Let p = 3, n = 2. As in Example 3, we take a, b, c, α, β, γ such that

|a|2 + |b|2 + |c|2 = |α|2 + |β|2 + |γ |2 = 1

and then define a0, a1, . . . , a8 using (1.4). In this case we have

A00(z) = a0 + a3z + a6z2, A01(z) = a1 + a4z + a7z2, A02(z) = a2 + a5z + a8z2.

Now, we require

a 6= 0, α = a, aα + bβ + cγ = a. (4.5)

In particular, for 0 < a < 1 we can choose numbers θ , t such that

cos(θ − t) =
a − a2

1− a2

and then set α = a, r =
√

1− a2, β = r cos θ , γ = r sin θ , b = r cos t , c = r sin t .

Under our assumptions the mask m0 has no blocked sets (see Example 3). Moreover, it follows
from (4.2) and (4.5) that

|A00(z)|
2
+ |A01(z)|

2
+ |A02(z)|

2
=

1
3

for all z on the unit circle T. To see this, note that by a direct calculation

|A00(z)|
2
+ |A01(z)|

2
+ |A02(z)|

2
=

8∑
α=0

|aα|
2
+ 2Re [(a0a3 + a1a4 + a2a5)z]

+2Re [(a0a6 + a1a7 + a2a8)z
2
] + 2Re [(a3a6 + a4a7 + a5a8)zz2,

where

27(a0a3 + a1a4 + a2a5) = a + α + (α + aα + bβ + cγ )ε3 + (a + aα + bβ + cγ )ε2
3,

27(a0a6 + a1a7 + a2a8) = a + α + (a + aα + bβ + cγ )ε3 + (α + aα + bβ + cγ )ε2
3,

27(a3a6 + a4a7 + a5a8) = 2ε3Re a + 2ε2
3Reα + 2Re (aα + bβ + cγ ).

Further, if

α0 =
√

3 (a0, a1, a2), α1 =
√

3 (a3, a4, a5), α2 =
√

3 (a6, a7, a8),

then

|α0|
2
+ |α1|

2
+ |α2|

2
= 1, 〈α0, α1〉 = 〈α0, α2〉 = 〈α1, α2〉 = 0,
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where 〈·, ·〉 is the inner product in C 3. It is clear that

α0 + α1z + α2z2
=
√

3 (A00(z), A01(z), A02(z)).

Let P2 be the orthogonal projection onto α2, i.e.,

P2w =
〈w, α2〉

〈α2, α2〉
α2, w ∈ C3.

Then we have

(I − P2 + z−1 P2)(α0 + α1z + α2z2)

= (I − P2)α0 + P2α1 + z(P2α2 + (I − P2)α1) =: β0 + β1z.

One now verifies that

|β0|
2
+ |β1|

2
= 1, 〈β0, β1〉 = 0.

Furthermore, if P1 is the orthogonal projection onto β1, then

(I − P1 + z−1 P1)(β0 + β1z) = (I − P1)β0 + P1β1 =: γ0.

By the Gram–Schmidt orthogonalization, we can find an unitary matrix Γ0 once the first row
of this matrix is the unit vector γ0. Then we set

Γ1(z) = (I − P1 + z P1)Γ0 and Γ2(z) = (I − P2 + z P2)Γ1(z).

The first row of Γ2(z) coincides with α0 + α1z + α2z2. Putting

(Alk(z))
2
l,k=0 =

1
√

3
Γ2(z),

we see that m1 and m2 can be defined as follows:

ml(ω) =

2∑
k=0

wk(ω)Alk(w3(ω)) =

8∑
α=0

a(l)α wα(ω), l = 1, 2.

Finally, we find

ψl(x) = 3
8∑
α=0

a(l)α ϕ(3 x 	 α), l = 1, 2.

Note that for the space L2(Qp) the corresponding wavelets were introduced recently in [12].

5. Adapted p-wavelet approximation

Suppose that a p-refinable function ϕ generates a p-MRA in L2(R+) and subspaces V j are
given by (1.6). For each j ∈ Z denote by Pj the orthogonal projection of L2(R+) onto V j .
Given f in L2(R+) it is naturally to choose parameters bs in (1.5) such that the approximation
method f ≈ Pj f will be optimal. If f belongs to some class M in L2(R+) then it is possible
to seek the parameters bs , which minimize for some fixed j the quantity

sup{‖ f − Pj f ‖ | f ∈M}
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and to study the behavior of this quantity as j → +∞. Also, it is very interesting investigate
p-wavelet approximation in the p-adic Hardy spaces (cf. [10,14]).

By analogy with [23] we discuss here another approach to the problem on optimization of the
approximation method f ≈ Pj f . For every j ∈ Z denote by W j the orthogonal complement
of V j in V j+1 and let Q j be the orthogonal projection of L2(R+) to W j . Since {V j } is a p-MRA,
for any f ∈ L2(R+) we have

f =
∑

j

Q j f = P0 f +
∑
j≥0

Q j f

and

lim
j→+∞

‖ f − Pj f ‖ = 0, lim
j→−∞

‖Pj f ‖ = 0.

It is easily seen, that

Pj f = Q j−1 f + Q j−2 f + · · · + Q j−s f + Pj−s f, j ∈ Z, s ∈ N.

The equality V j = V j−1 ⊕W j−1 means that W j−1 contains the “details” which are necessary to
get over the ( j − 1)th level of approximation to the more exact j th level. Since

‖Pj f ‖2 = ‖Pj−1 f ‖2 + ‖Q j−1 f ‖2,

it is natural to choose the parameters bs to maximize ‖Pj−1 f ‖ (or, equivalently, to minimize
‖Q j−1 f ‖). To this end let us write Eq. (1.1) in the form

ϕ(x) =
√

p
pn
−1∑

α=0

ãαϕ(p x 	 hα),

where ãα =
√

p aα. Putting ϕ j (x) = p j/2ϕ(p j x), we have

ϕ j−1(x) =
pn
−1∑

α=0

ãαϕ j (x 	 p− jα), (5.1)

where ϕ j (x 	 p− j k) = ϕ j,k(x). Further, given f ∈ L2(R+) we set

f ( j, k) := 〈 f, ϕ j,k〉 =

∫
R

f (x)ϕ j (x 	 p− j k) dx .

Applying (5.1), we obtain

f ( j − 1, k) =
∫
R+

f (x)ϕ j−1(x 	 p− j+1k) dx

=

pn
−1∑

α=0

ãα

∫
R+

f (x)ϕ j (x 	 p− j (p k ⊕ α)) dx

and hence

f ( j − 1, k) =
pn
−1∑

α=0

ãα f ( j, p k ⊕ α). (5.2)
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Since

Pj f =
∑

k∈Z+
f ( j, k)ϕ j,k,

we see from (5.2) that

‖Pj−1 f ‖2 =
∑

k∈Z+
| f ( j − 1, k)|2 =

∑
k∈Z+

∣∣∣∣∣
pn
−1∑

α=0

ãα f ( j, p k ⊕ α)

∣∣∣∣∣
2

=

∑
k∈Z+

(
pn
−1∑

α,β=0

ãα ãβ f ( j, p k ⊕ α) f ( j, p k ⊕ β)

)
. (5.3)

For 0 ≤ α, β ≤ pn
− 1 we let

Fα,β( j) :=
∑

k∈Z+
f ( j, p k ⊕ α) f ( j, p k ⊕ β).

Then Fβ,α( j) = Fα,β( j) and (5.3) implies

‖Pj−1 f ‖2 =
pn
−1∑

α,β=0

Fα,β( j)ãα ãβ . (5.4)

Denote by U(p, n) the set of vectors u = (u0, u1, . . . , u pn−1) such that

u0 = 1, u j = 0 for j ∈ {pn−1, 2pn−1, . . . , (p − 1)pn−1
},

and

p−1∑
l=0

|ulpn−1+ j |
2
= 1 for j ∈ {1, 2, . . . , pn−1

− 1}.

For every u = (u0, u1, . . . , u pn−1) in U(p, n) we define aα(u) by the formulas

aα(u) =
1
pn

pn
−1∑

s=0

uswα(s/pn), 0 ≤ α ≤ pn
− 1.

Fix a positive integer j 0. If a vector u∗ is a solution of the extremal problem

pn
−1∑

α,β=0

Fα,β( j 0)aα(u)aβ(u)→ max, u ∈ U(p, n), (5.5)

then ϕ∗j 0−1 is defined by

ϕ∗j 0−1(x) =
pn
−1∑

α=0

aα(u
∗)ϕ j 0(x 	 p− j 0α).

It is seen from (5.4) and (5.5) that ‖P∗j f ‖ ≥ ‖Pj f ‖ for j = j 0 − 1. Now, if the mask of ϕ∗j 0−1
has no blocked sets, then ϕ∗j 0−2 is constructed by ϕ∗j 0−1 and so on. Finally, we fix s and for each
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j ∈ { j 0 − 1, . . . , j 0 − s} replace Pj f by the orthogonal projection P∗j f of f to the subspace

V ∗j = closL2(R+)span {ϕ∗j,k | k ∈ Z+}.

The effectiveness of this method of adaptation can be illustrated by numerical examples in terms
(cf. [20]) of the entropy estimates.
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